Simulation of Signal Generation and Measuring Circuit and Real Time IoT Based Electrical Bio Impedance Cardiac Monitoring System

Author(s):  
Sheeba Santhosh ◽  
A. Vimala Juliet ◽  
G. Hari Krishnan
2018 ◽  
pp. 188-198 ◽  
Author(s):  
Uma Arun ◽  
Natarajan Sriraam

Today's healthcare technology provides promising solutions to cater to the needs of patients. The development of wearable physiological monitoring system has reached home-centric patients by ensuring faster healthcare services. The primary advantage of this system is activation of alarms to alert the specialist in a nearby hospital to attend to any sort of emergency. Specifically, cardiac-related problems need special attention when a 24-hour Holter monitors ECG signals and identifies the level of abnormalities under various circumstances. Although several brands of Holters exist in market, there is a huge demand for digitized Holter recorders. These recorders can simultaneously analyse cardiac signals in real time mode and store the data and reuse them for next 24 hours. As home-centric based wearable cardiac monitoring system gains much attention recently, there is a need to design and develop a cardiac monitoring system by establishing a trade-off between the required clinical diagnostic quality and cost. This research study highlights a comprehensive survey of various cardiac monitoring systems under wire, wireless and wearable modes. This provides an insight into the need of the hour in bringing a cost-effective wearable system. The study provides an insight of the technological aspects of the existing cardiac monitoring system and suggests a viable design suitable for developing countries.


Author(s):  
Uma Arun ◽  
Natarajan Sriraam

Today's healthcare technology provides promising solutions to cater to the needs of patients. The development of wearable physiological monitoring system has reached home-centric patients by ensuring faster healthcare services. The primary advantage of this system is activation of alarms to alert the specialist in a nearby hospital to attend to any sort of emergency. Specifically, cardiac-related problems need special attention when a 24-hour Holter monitors ECG signals and identifies the level of abnormalities under various circumstances. Although several brands of Holters exist in market, there is a huge demand for digitized Holter recorders. These recorders can simultaneously analyse cardiac signals in real time mode and store the data and reuse them for next 24 hours. As home-centric based wearable cardiac monitoring system gains much attention recently, there is a need to design and develop a cardiac monitoring system by establishing a trade-off between the required clinical diagnostic quality and cost. This research study highlights a comprehensive survey of various cardiac monitoring systems under wire, wireless and wearable modes. This provides an insight into the need of the hour in bringing a cost-effective wearable system. The study provides an insight of the technological aspects of the existing cardiac monitoring system and suggests a viable design suitable for developing countries.


2016 ◽  
Vol 5 (1) ◽  
pp. 53-63
Author(s):  
Uma Arun ◽  
Natarajan Sriraam

Today's healthcare technology provides promising solutions to cater to the needs of patients. The development of wearable physiological monitoring system has reached home-centric patients by ensuring faster healthcare services. The primary advantage of this system is activation of alarms to alert the specialist in a nearby hospital to attend to any sort of emergency. Specifically, cardiac-related problems need special attention when a 24-hour Holter monitors ECG signals and identifies the level of abnormalities under various circumstances. Although several brands of Holters exist in market, there is a huge demand for digitized Holter recorders. These recorders can simultaneously analyse cardiac signals in real time mode and store the data and reuse them for next 24 hours. As home-centric based wearable cardiac monitoring system gains much attention recently, there is a need to design and develop a cardiac monitoring system by establishing a trade-off between the required clinical diagnostic quality and cost. This research study highlights a comprehensive survey of various cardiac monitoring systems under wire, wireless and wearable modes. This provides an insight into the need of the hour in bringing a cost-effective wearable system. The study provides an insight of the technological aspects of the existing cardiac monitoring system and suggests a viable design suitable for developing countries.


2015 ◽  
Vol 1 (1) ◽  
pp. 37-45
Author(s):  
Irwansyah Irwansyah ◽  
Hendra Kusumah ◽  
Muhammad Syarif

Along with the times, recently there have been found tool to facilitate human’s work. Electronics is one of technology to facilitate human’s work. One of human desire is being safe, so that people think to make a tool which can monitor the surrounding condition without being monitored with people’s own eyes. Public awareness of the underground water channels currently felt still very little so frequent floods. To avoid the flood disaster monitoring needs to be done to underground water channels.This tool is controlled via a web browser. for the components used in this monitoring system is the Raspberry Pi technology where the system can take pictures in real time with the help of Logitech C170 webcam camera. web browser and Raspberry Pi make everyone can control the devices around with using smartphone, laptop, computer and ipad. This research is expected to be able to help the users in knowing the blockage on water flow and monitored around in realtime.


2014 ◽  
Author(s):  
Rozaimi Ghazali ◽  
◽  
Asiah Mohd Pilus ◽  
Wan Mohd Bukhari Wan Daud ◽  
Mohd Juzaila Abd Latif ◽  
...  

Author(s):  
Jia Hua-Ping ◽  
Zhao Jun-Long ◽  
Liu Jun

Cardiovascular disease is one of the major diseases that threaten the human health. But the existing electrocardiograph (ECG) monitoring system has many limitations in practical application. In order to monitor ECG in real time, a portable ECG monitoring system based on the Android platform is developed to meet the needs of the public. The system uses BMD101 ECG chip to collect and process ECG signals in the Android system, where data storage and waveform display of ECG data can be realized. The Bluetooth HC-07 module is used for ECG data transmission. The abnormal ECG can be judged by P wave, QRS bandwidth, and RR interval. If abnormal ECG is found, an early warning mechanism will be activated to locate the user’s location in real time and send preset short messages, so that the user can get timely treatment, avoiding dangerous occurrence. The monitoring system is convenient and portable, which brings great convenie to the life of ordinary cardiovascular users.


Sign in / Sign up

Export Citation Format

Share Document