scholarly journals Strengths of Fuzzy Techniques in Data Science

Author(s):  
Bernadette Bouchon-Meunier
Author(s):  
Charles Bouveyron ◽  
Gilles Celeux ◽  
T. Brendan Murphy ◽  
Adrian E. Raftery

1996 ◽  
Vol 35 (04/05) ◽  
pp. 334-342 ◽  
Author(s):  
K.-P. Adlassnig ◽  
G. Kolarz ◽  
H. Leitich

Abstract:In 1987, the American Rheumatism Association issued a set of criteria for the classification of rheumatoid arthritis (RA) to provide a uniform definition of RA patients. Fuzzy set theory and fuzzy logic were used to transform this set of criteria into a diagnostic tool that offers diagnoses at different levels of confidence: a definite level, which was consistent with the original criteria definition, as well as several possible and superdefinite levels. Two fuzzy models and a reference model which provided results at a definite level only were applied to 292 clinical cases from a hospital for rheumatic diseases. At the definite level, all models yielded a sensitivity rate of 72.6% and a specificity rate of 87.0%. Sensitivity and specificity rates at the possible levels ranged from 73.3% to 85.6% and from 83.6% to 87.0%. At the superdefinite levels, sensitivity rates ranged from 39.0% to 63.7% and specificity rates from 90.4% to 95.2%. Fuzzy techniques were helpful to add flexibility to preexisting diagnostic criteria in order to obtain diagnoses at the desired level of confidence.


Author(s):  
Shaveta Bhatia

 The epoch of the big data presents many opportunities for the development in the range of data science, biomedical research cyber security, and cloud computing. Nowadays the big data gained popularity.  It also invites many provocations and upshot in the security and privacy of the big data. There are various type of threats, attacks such as leakage of data, the third party tries to access, viruses and vulnerability that stand against the security of the big data. This paper will discuss about the security threats and their approximate method in the field of biomedical research, cyber security and cloud computing.


Author(s):  
Natalia V. Vysotskaya ◽  
T. V. Kyrbatskaya

The article is devoted to the consideration of the main directions of digital transformation of the transport industry in Russia. It is proposed in the process of digital transformation to integrate the community approach into the company's business model using blockchain technology and methods and results of data science; complement the new digital culture with a digital team and new communities that help management solve business problems; focus the attention of the company's management on its employees and develop those competencies in them that robots and artificial intelligence systems cannot implement: develop algorithmic, computable and non-linear thinking in all employees of the company.


2019 ◽  
Vol 5 (30) ◽  
pp. 960-968
Author(s):  
Güner Gözde KILIÇ
Keyword(s):  

2020 ◽  
Author(s):  
Saeed Nosratabadi ◽  
Amir Mosavi ◽  
Puhong Duan ◽  
Pedram Ghamisi ◽  
Ferdinand Filip ◽  
...  

This paper provides a state-of-the-art investigation of advances in data science in emerging economic applications. The analysis was performed on novel data science methods in four individual classes of deep learning models, hybrid deep learning models, hybrid machine learning, and ensemble models. Application domains include a wide and diverse range of economics research from the stock market, marketing, and e-commerce to corporate banking and cryptocurrency. Prisma method, a systematic literature review methodology, was used to ensure the quality of the survey. The findings reveal that the trends follow the advancement of hybrid models, which, based on the accuracy metric, outperform other learning algorithms. It is further expected that the trends will converge toward the advancements of sophisticated hybrid deep learning models.


2019 ◽  
Vol 114 (12) ◽  
pp. 874-877 ◽  
Author(s):  
Jürgen Mazarov ◽  
Patrick Wolf ◽  
Julian Schallow ◽  
Fabian Nöhring ◽  
Jochen Deuse ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document