Complex Dark Sectors and Large Bound States of Dark Matter

Author(s):  
Kathryn M. Zurek
Keyword(s):  
2017 ◽  
Vol 91 ◽  
pp. 22-33 ◽  
Author(s):  
F. Nozzoli
Keyword(s):  

2020 ◽  
Vol 9 (5) ◽  
Author(s):  
Iason Baldes ◽  
Francesca Calore ◽  
Kalliopi Petraki ◽  
Vincent Poireau ◽  
Nicholas L. Rodd

Indirect searches for dark matter (DM) have conventionally been applied to the products of DM annihilation or decay. If DM couples to light force carriers, however, it can be captured into bound states via dissipation of energy that may yield detectable signals. We extend the indirect searches to DM bound state formation and transitions between bound levels, and constrain the emission of unstable dark photons. Our results significantly refine the predicted signal flux that could be observed in experiments. As a concrete example, we use Fermi-LAT dwarf spheroidal observations to obtain constraints in terms of the dark photon mass and energy which we use to search for the formation of stable or unstable bound states.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Michael J. Baker ◽  
Darius A. Faroughy ◽  
Sokratis Trifinopoulos

Abstract Motivated by UV explanations of the B-physics anomalies, we study a dark sector containing a Majorana dark matter candidate and a coloured coannihilation partner, connected to the Standard Model predominantly via a U1 vector leptoquark. A TeV scale U1 leptoquark, which couples mostly to third generation fermions, is the only successful single-mediator description of the B-physics anomalies. After calculating the dark matter relic surface, we focus on the most promising experimental avenue: LHC searches for the coloured coannihilation partner. We find that the coloured partner hadronizes and forms meson-like bound states leading to resonant signatures at colliders reminiscent of the quarkonia decay modes in the Standard Model. By recasting existing dilepton and monojet searches we exclude coannihilation partner masses less than 280 GeV and 400 GeV, respectively. Since other existing collider searches do not significantly probe the parameter space, we propose a new dedicated search strategy for pair production of the coloured partner decaying into bbττ final states and dark matter particles. This search is expected to probe the model up to dark matter masses around 600 GeV with current luminosity.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Christian Gross ◽  
Giacomo Landini ◽  
Alessandro Strumia ◽  
Daniele Teresi

Abstract First order phase transitions can leave relic pockets of false vacua and their particles, that manifest as macroscopic Dark Matter. We compute one predictive model: a gauge theory with a dark quark relic heavier than the confinement scale. During the first order phase transition to confinement, dark quarks remain in the false vacuum and get compressed, forming Fermi balls that can undergo gravitational collapse to stable dark dwarfs (bound states analogous to white dwarfs) near the Chandrasekhar limit, or primordial black holes.


2013 ◽  
Vol 28 (23) ◽  
pp. 1350106
Author(s):  
HARALD FRITZSCH

The weak bosons are bound states of two fermions and their antiparticles, denoted as haplons. The confinement scale of the associated gauge group SU(2) is of the order of 0.3 TeV. Besides the weak bosons, there also exist new bosons, an SU(2)-triplet and a singlet, with a mass of the order of 0.5 TeV. The neutral singlet boson is stable and provides the dark matter in the universe.


2014 ◽  
Vol 89 (10) ◽  
Author(s):  
Ranjan Laha ◽  
Eric Braaten

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Quentin Wallemacq

We reinterpret the results of the direct searches for dark matter in terms of milli-interacting dark particles. The model reproduces the positive results from DAMA/LIBRA and CoGeNT and is consistent with the absence of signal in the XENON100, CDMS-II/Ge, and LUX detectors. Dark atoms, interacting with standard atoms through a kinetic mixing between photons and dark photons and a mass mixing ofσmesons with dark scalars, diffuse elastically in terrestrial matter where they deposit all their energy. Reaching underground detectors through gravity at thermal energies, they form bound states with nuclei of the active medium by radiative capture, which causes the emission of photons that produce the observed signals. The parameter space of the model is explored and regions reproducing the results at the 2σlevel are obtained for each experiment.


Sign in / Sign up

Export Citation Format

Share Document