Generating Virtual Chromoendoscopic Images and Improving Detectability and Classification Performance of Endoscopic Lesions

Author(s):  
Akihiro Fukuda ◽  
Tadashi Miyamoto ◽  
Shunsuke Kamba ◽  
Kazuki Sumiyama
Author(s):  
Diane Pecher ◽  
Inge Boot ◽  
Saskia van Dantzig ◽  
Carol J. Madden ◽  
David E. Huber ◽  
...  

Previous studies (e.g., Pecher, Zeelenberg, & Wagenmakers, 2005) found that semantic classification performance is better for target words with orthographic neighbors that are mostly from the same semantic class (e.g., living) compared to target words with orthographic neighbors that are mostly from the opposite semantic class (e.g., nonliving). In the present study we investigated the contribution of phonology to orthographic neighborhood effects by comparing effects of phonologically congruent orthographic neighbors (book-hook) to phonologically incongruent orthographic neighbors (sand-wand). The prior presentation of a semantically congruent word produced larger effects on subsequent animacy decisions when the previously presented word was a phonologically congruent neighbor than when it was a phonologically incongruent neighbor. In a second experiment, performance differences between target words with versus without semantically congruent orthographic neighbors were larger if the orthographic neighbors were also phonologically congruent. These results support models of visual word recognition that assume an important role for phonology in cascaded access to meaning.


2012 ◽  
Vol 58 (4) ◽  
pp. 425-431 ◽  
Author(s):  
D. Selvathi ◽  
N. Emimal ◽  
Henry Selvaraj

Abstract The medical imaging field has grown significantly in recent years and demands high accuracy since it deals with human life. The idea is to reduce human error as much as possible by assisting physicians and radiologists with some automatic techniques. The use of artificial intelligent techniques has shown great potential in this field. Hence, in this paper the neuro fuzzy classifier is applied for the automated characterization of atheromatous plaque to identify the fibrotic, lipidic and calcified tissues in Intravascular Ultrasound images (IVUS) which is designed using sixteen inputs, corresponds to sixteen pixels of instantaneous scanning matrix, one output that tells whether the pixel under consideration is Fibrotic, Lipidic, Calcified or Normal pixel. The classification performance was evaluated in terms of sensitivity, specificity and accuracy and the results confirmed that the proposed system has potential in detecting the respective plaque with the average accuracy of 98.9%.


2020 ◽  
Author(s):  
Nalika Ulapane ◽  
Karthick Thiyagarajan ◽  
sarath kodagoda

<div>Classification has become a vital task in modern machine learning and Artificial Intelligence applications, including smart sensing. Numerous machine learning techniques are available to perform classification. Similarly, numerous practices, such as feature selection (i.e., selection of a subset of descriptor variables that optimally describe the output), are available to improve classifier performance. In this paper, we consider the case of a given supervised learning classification task that has to be performed making use of continuous-valued features. It is assumed that an optimal subset of features has already been selected. Therefore, no further feature reduction, or feature addition, is to be carried out. Then, we attempt to improve the classification performance by passing the given feature set through a transformation that produces a new feature set which we have named the “Binary Spectrum”. Via a case study example done on some Pulsed Eddy Current sensor data captured from an infrastructure monitoring task, we demonstrate how the classification accuracy of a Support Vector Machine (SVM) classifier increases through the use of this Binary Spectrum feature, indicating the feature transformation’s potential for broader usage.</div><div><br></div>


Author(s):  
Inzamam Mashood Nasir ◽  
Muhammad Rashid ◽  
Jamal Hussain Shah ◽  
Muhammad Sharif ◽  
Muhammad Yahiya Haider Awan ◽  
...  

Background: Breast cancer is considered as the most perilous sickness among females worldwide and the ratio of new cases is expanding yearly. Many researchers have proposed efficient algorithms to diagnose breast cancer at early stages, which have increased the efficiency and performance by utilizing the learned features of gold standard histopathological images. Objective: Most of these systems have either used traditional handcrafted features or deep features which had a lot of noise and redundancy, which ultimately decrease the performance of the system. Methods: A hybrid approach is proposed by fusing and optimizing the properties of handcrafted and deep features to classify the breast cancer images. HOG and LBP features are serially fused with pretrained models VGG19 and InceptionV3. PCR and ICR are used to evaluate the classification performance of proposed method. Results: The method concentrates on histopathological images to classify the breast cancer. The performance is compared with state-of-the-art techniques, where an overall patient-level accuracy of 97.2% and image-level accuracy of 96.7% is recorded. Conclusion: The proposed hybrid method achieves the best performance as compared to previous methods and it can be used for the intelligent healthcare systems and early breast cancer detection.


Author(s):  
Yuejun Liu ◽  
Yifei Xu ◽  
Xiangzheng Meng ◽  
Xuguang Wang ◽  
Tianxu Bai

Background: Medical imaging plays an important role in the diagnosis of thyroid diseases. In the field of machine learning, multiple dimensional deep learning algorithms are widely used in image classification and recognition, and have achieved great success. Objective: The method based on multiple dimensional deep learning is employed for the auxiliary diagnosis of thyroid diseases based on SPECT images. The performances of different deep learning models are evaluated and compared. Methods: Thyroid SPECT images are collected with three types, they are hyperthyroidism, normal and hypothyroidism. In the pre-processing, the region of interest of thyroid is segmented and the amount of data sample is expanded. Four CNN models, including CNN, Inception, VGG16 and RNN, are used to evaluate deep learning methods. Results: Deep learning based methods have good classification performance, the accuracy is 92.9%-96.2%, AUC is 97.8%-99.6%. VGG16 model has the best performance, the accuracy is 96.2% and AUC is 99.6%. Especially, the VGG16 model with a changing learning rate works best. Conclusion: The standard CNN, Inception, VGG16, and RNN four deep learning models are efficient for the classification of thyroid diseases with SPECT images. The accuracy of the assisted diagnostic method based on deep learning is higher than that of other methods reported in the literature.


Author(s):  
Farrikh Alzami ◽  
Erika Devi Udayanti ◽  
Dwi Puji Prabowo ◽  
Rama Aria Megantara

Sentiment analysis in terms of polarity classification is very important in everyday life, with the existence of polarity, many people can find out whether the respected document has positive or negative sentiment so that it can help in choosing and making decisions. Sentiment analysis usually done manually. Therefore, an automatic sentiment analysis classification process is needed. However, it is rare to find studies that discuss extraction features and which learning models are suitable for unstructured sentiment analysis types with the Amazon food review case. This research explores some extraction features such as Word Bags, TF-IDF, Word2Vector, as well as a combination of TF-IDF and Word2Vector with several machine learning models such as Random Forest, SVM, KNN and Naïve Bayes to find out a combination of feature extraction and learning models that can help add variety to the analysis of polarity sentiments. By assisting with document preparation such as html tags and punctuation and special characters, using snowball stemming, TF-IDF results obtained with SVM are suitable for obtaining a polarity classification in unstructured sentiment analysis for the case of Amazon food review with a performance result of 87,3 percent.


Sign in / Sign up

Export Citation Format

Share Document