Comparison of Data Mining Techniques in the Cloud for Software Engineering

Author(s):  
Kokten Ulas Birant ◽  
Derya Birant
Author(s):  
RICHI NAYAK ◽  
TIAN QIU

Data mining techniques provide people with new power to research and manipulate the existing large volume of data. A data mining process discovers interesting information from the hidden data that can either be used for future prediction and/or intelligently summarising the details of the data. There are many achievements of applying data mining techniques to various areas such as marketing, medical, and financial, although few of them can be currently seen in software engineering domain. In this paper, a proposed data mining application in software engineering domain is explained and experimented. The empirical results demonstrate the capability of data mining techniques in software engineering domain and the potential benefits in applying data mining to this area.


2020 ◽  
Vol 26 (1) ◽  
pp. 33-49
Author(s):  
Mohammad Muhairat ◽  
Shadi Bi ◽  
Bilal Hawashin ◽  
Mohammad Elbes ◽  
Mahmoud Al-Ayyoub

Requirement gathering is a vital step in software engineering. Even though many recent researches concentrated on the improvement of the requirement gathering process, many of their works lack completeness especially when the number of users is large. Data Mining techniques have been recently employed in various domains with promising results. In this work, we propose an intelligent recommender system for requirement engineering based on association rule analysis, which is a main category in Data Mining. Such recommender would contribute in enhancing the accuracy of the gathered requirements and provide more comprehensive results. Conducted experiments in this work prove that FP Growth outperformed Apriori in terms of execution and space consumption, while both methods were efficient in term of accuracy.


2019 ◽  
Vol 214 ◽  
pp. 05007
Author(s):  
Marco Canaparo ◽  
Elisabetta Ronchieri

Software quality monitoring and analysis are among the most productive topics in software engineering research. Their results may be effectively employed by engineers during software development life cycle. Open source software constitutes a valid test case for the assessment of software characteristics. The data mining approach has been proposed in literature to extract software characteristics from software engineering data. This paper aims at comparing diverse data mining techniques (e.g., derived from machine learning) for developing effective software quality prediction models. To achieve this goal, we tackled various issues, such as the collection of software metrics from open source repositories, the assessment of prediction models to detect software issues and the adoption of statistical methods to evaluate data mining techniques. The results of this study aspire to identify the data mining techniques that perform better amongst all the ones used in this paper for software quality prediction models.


2019 ◽  
Vol 15 (2) ◽  
pp. 275-280
Author(s):  
Agus Setiyono ◽  
Hilman F Pardede

It is now common for a cellphone to receive spam messages. Great number of received messages making it difficult for human to classify those messages to Spam or no Spam.  One way to overcome this problem is to use Data Mining for automatic classifications. In this paper, we investigate various data mining techniques, named Support Vector Machine, Multinomial Naïve Bayes and Decision Tree for automatic spam detection. Our experimental results show that Support Vector Machine algorithm is the best algorithm over three evaluated algorithms. Support Vector Machine achieves 98.33%, while Multinomial Naïve Bayes achieves 98.13% and Decision Tree is at 97.10 % accuracy.


2019 ◽  
Vol 1 (1) ◽  
pp. 121-131
Author(s):  
Ali Fauzi

The existence of big data of Indonesian FDI (foreign direct investment)/ CDI (capital direct investment) has not been exploited somehow to give further ideas and decision making basis. Example of data exploitation by data mining techniques are for clustering/labeling using K-Mean and classification/prediction using Naïve Bayesian of such DCI categories. One of DCI form is the ‘Quick-Wins’, a.k.a. ‘Low-Hanging-Fruits’ Direct Capital Investment (DCI), or named shortly as QWDI. Despite its mentioned unfavorable factors, i.e. exploitation of natural resources, low added-value creation, low skill-low wages employment, environmental impacts, etc., QWDI , to have great contribution for quick and high job creation, export market penetration and advancement of technology potential. By using some basic data mining techniques as complements to usual statistical/query analysis, or analysis by similar studies or researches, this study has been intended to enable government planners, starting-up companies or financial institutions for further CDI development. The idea of business intelligence orientation and knowledge generation scenarios is also one of precious basis. At its turn, Information and Communication Technology (ICT)’s enablement will have strategic role for Indonesian enterprises growth and as a fundamental for ‘knowledge based economy’ in Indonesia.


Author(s):  
S. K. Saravanan ◽  
G. N. K. Suresh Babu

In contemporary days the more secured data transfer occurs almost through internet. At same duration the risk also augments in secure data transfer. Having the rise and also light progressiveness in e – commerce, the usage of credit card (CC) online transactions has been also dramatically augmenting. The CC (credit card) usage for a safety balance transfer has been a time requirement. Credit-card fraud finding is the most significant thing like fraudsters that are augmenting every day. The intention of this survey has been assaying regarding the issues associated with credit card deception behavior utilizing data-mining methodologies. Data mining has been a clear procedure which takes data like input and also proffers throughput in the models forms or patterns forms. This investigation is very beneficial for any credit card supplier for choosing a suitable solution for their issue and for the researchers for having a comprehensive assessment of the literature in this field.


Author(s):  
Jean Claude Turiho ◽  
◽  
Wilson Cheruiyot ◽  
Anne Kibe ◽  
Irénée Mungwarakarama ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document