Synthesis and Characterization of Nanofluids: Thermal Conductivity, Electrical Conductivity and Particle Size Distribution

Author(s):  
Divya P. Barai ◽  
Kalyani K. Chichghare ◽  
Shivani S. Chawhan ◽  
Bharat A. Bhanvase
2015 ◽  
Vol 816 ◽  
pp. 15-20
Author(s):  
Qian Yu ◽  
Mei Hui Song ◽  
Yan Li ◽  
Xiao Chen Zhang

AlN/Cu composite powder was prepared by ball milling method. Laser particle size analyzer, X-ray diffraction and scanning electron microscopy analysis were performed to study AlN/Cu composite powders. The effects of rotation speed, mixing time, and ball to powder weight ratio (BPR) on the particle size distribution, composition, and morphology were investigated. Results showed that the best ball milling parameters were the rotation speed of 200r/min, mixing time of 6 hours and BPR 10:1. In this best condition, AlN/Cu composite powders would be obtained with optimum particle size distribution and morphology. Then composite powders were pressed at 500MPa and sintered at 1000°C in N2atmosphere. Finally, the composite with an AlN content of 33wt% showed the bending strength of 370MPa, Vikers hardness HV154, thermal conductivity of 182.7W/m°C and electrical conductivity of 3.08MS/m. However, the composite with an AlN content of 25wt% showed the bending strength of 329MPa, Vikers hardness HV122, thermal conductivity of 195W/m°C and electrical conductivity of 6.54MS/m.


Soil Research ◽  
2013 ◽  
Vol 51 (1) ◽  
pp. 23 ◽  
Author(s):  
Mohammad Reza Neyshabouri ◽  
Mehdi Rahmati ◽  
Claude Doussan ◽  
Boshra Behroozinezhad

Unsaturated soil hydraulic conductivity K is a fundamental transfer property of soil but its measurement is costly, difficult, and time-consuming due to its large variations with water content (θ) or matric potential (h). Recently, C. Doussan and S. Ruy proposed a method/model using measurements of the electrical conductivity of soil core samples to predict K(h). This method requires the measurement or the setting of a range of matric potentials h in the core samples—a possible lengthy process requiring specialised devices. To avoid h estimation, we propose to simplify that method by introducing the particle-size distribution (PSD) of the soil as a proxy for soil pore diameters and matric potentials, with the Arya and Paris (AP) model. Tests of this simplified model (SM) with laboratory data on a broad range of soils and using the AP model with available, previously defined parameters showed that the accuracy was lower for the SM than for the original model (DR) in predicting K (RMSE of logK = 1.10 for SM v. 0.30 for DR; K in m s–1). However, accuracy was increased for SM when considering coarse- and medium-textured soils only (RMSE of logK = 0.61 for SM v. 0.26 for DR). Further tests with 51 soils from the UNSODA database and our own measurements, with estimated electrical properties, confirmed good agreement of the SM for coarse–medium-textured soils (<35–40% clay). For these textures, the SM also performed well compared with the van Genuchten–Mualem model. Error analysis of SM results and fitting of the AP parameter showed that most of the error for fine-textured soils came from poorer adequacy of the AP model’s previously defined parameters for defining the water retention curve, whereas this was much less so for coarse-textured soils. The SM, using readily accessible soil data, could be a relatively straightforward way to estimate, in situ or in the laboratory, K(h) for coarse–medium-textured soils. This requires, however, a prior check of the predictive efficacy of the AP model for the specific soil investigated, in particular for fine-textured/structured soils and when using previously defined AP parameters.


2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Jan Večeřa ◽  
Iveta Šedová ◽  
Petr Mikulášek ◽  
Petra Šulcová

Rutile pigments Ti1-3xCrxNb2xO2±δ (where x=0, 0.05, 0.10, 0.20, 0.30 and 0.50) prepared by solid-state reaction are investigated. Chromium is chromophore (coloring ion) and niobium is counterion (charge-compensating element for electroneutrality). The effect of composition (x), calcination temperature (850, 900, 950, 1000, 1050, 1100 and 1150°C), and starting titanium compounds (anatase TiO2, hydrated anatase paste, TiOSO4·2H2O, and hydrated Na2Ti4O9 paste) on their color properties into organic matrix and particle size distribution was observed. According to the highest chroma C and visual color evaluation, yellow and orange pigments were selected as in color the most interesting. They have concentration x=0.05 or 0.10 and are prepared from anatase TiO2 and TiOSO4·2H2O at temperature ≥1050°C.


Sign in / Sign up

Export Citation Format

Share Document