Bounding Procedures and Exact Solutions for a Class of Territory Design Problems

Author(s):  
Juan A. Díaz ◽  
Dolores E. Luna ◽  
María G. Sandoval
2006 ◽  
Vol 34 (3) ◽  
pp. 170-194 ◽  
Author(s):  
M. Koishi ◽  
Z. Shida

Abstract Since tires carry out many functions and many of them have tradeoffs, it is important to find the combination of design variables that satisfy well-balanced performance in conceptual design stage. To find a good design of tires is to solve the multi-objective design problems, i.e., inverse problems. However, due to the lack of suitable solution techniques, such problems are converted into a single-objective optimization problem before being solved. Therefore, it is difficult to find the Pareto solutions of multi-objective design problems of tires. Recently, multi-objective evolutionary algorithms have become popular in many fields to find the Pareto solutions. In this paper, we propose a design procedure to solve multi-objective design problems as the comprehensive solver of inverse problems. At first, a multi-objective genetic algorithm (MOGA) is employed to find the Pareto solutions of tire performance, which are in multi-dimensional space of objective functions. Response surface method is also used to evaluate objective functions in the optimization process and can reduce CPU time dramatically. In addition, a self-organizing map (SOM) proposed by Kohonen is used to map Pareto solutions from high-dimensional objective space onto two-dimensional space. Using SOM, design engineers see easily the Pareto solutions of tire performance and can find suitable design plans. The SOM can be considered as an inverse function that defines the relation between Pareto solutions and design variables. To demonstrate the procedure, tire tread design is conducted. The objective of design is to improve uneven wear and wear life for both the front tire and the rear tire of a passenger car. Wear performance is evaluated by finite element analysis (FEA). Response surface is obtained by the design of experiments and FEA. Using both MOGA and SOM, we obtain a map of Pareto solutions. We can find suitable design plans that satisfy well-balanced performance on the map called “multi-performance map.” It helps tire design engineers to make their decision in conceptual design stage.


2020 ◽  
Vol 11 (1) ◽  
pp. 93-100
Author(s):  
Vina Apriliani ◽  
Ikhsan Maulidi ◽  
Budi Azhari

One of the phenomenon in marine science that is often encountered is the phenomenon of water waves. Waves that occur below the surface of seawater are called internal waves. One of the mathematical models that can represent solitary internal waves is the modified Korteweg-de Vries (mKdV) equation. Many methods can be used to construct the solution of the mKdV wave equation, one of which is the extended F-expansion method. The purpose of this study is to determine the solution of the mKdV wave equation using the extended F-expansion method. The result of solving the mKdV wave equation is the exact solutions. The exact solutions of the mKdV wave equation are expressed in the Jacobi elliptic functions, trigonometric functions, and hyperbolic functions. From this research, it is expected to be able to add insight and knowledge about the implementation of the innovative methods for solving wave equations. 


2016 ◽  
pp. 4437-4439
Author(s):  
Adil Jhangeer ◽  
Fahad Al-Mufadi

In this paper, conserved quantities are computed for a class of evolution equation by using the partial Noether approach [2]. The partial Lagrangian approach is applied to the considered equation, infinite many conservation laws are obtained depending on the coefficients of equation for each n. These results give potential systems for the family of considered equation, which are further helpful to compute the exact solutions.


Sign in / Sign up

Export Citation Format

Share Document