scholarly journals Dynamic Disruption Simulation in Large-Scale Urban Rail Transit Systems

Author(s):  
Steffen O. P. Blume ◽  
Michel-Alexandre Cardin ◽  
Giovanni Sansavini
2014 ◽  
Vol 488-489 ◽  
pp. 1439-1443
Author(s):  
Jin Hai Li ◽  
Jian Feng Liu

Hyperpaths enumeration is one of the basic procedures in many traffic planning issues. As a result of its distinctive structure, hyperpaths in Urban Rail Transit Network (URTN) are different from those in road network. Typically, one may never visit a station more than once and would never transfer from one line to another that has been visited in a loopless URTN, meaning that stations a hyperpath traversed cannot be repeated, neither do lines in loopless networks. This paper studies the relationships between feasible path and the shortest path in terms of travel costs. In this paper, a new definition of hyperpath in URTN is proposed and a new algorithm based on the breadth first searching (BFS) method is presented to enumerate the hyperpaths. The algorithm can safely avoid hyperpath omission and can even be applied in networks containing loops as well. The influence of parameters on hyperpaths is studied by experimentally finding hyperpaths in the subway network in Beijing. A group of suggested parameter pairs are then given. Finally, a numerical experiment is used to illustrate the validity of the proposed algorithm. The results imply the significance of the convergence of the BFS algorithm which can be used to search hyperpaths in large scale URTN even with loop.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Zi-jia Wang ◽  
Jing-qi Li ◽  
Jiang-yue Wu ◽  
Zhi-gang Yang

In the current urban rail transit systems, nearly 15% of passengers are noncommuter travelers who use single-trip ticket cards (ticket cards). Accordingly, the effective management of ticket cards is of great importance. This article suggests a time series model for use in predicting ticket card storage based on the characteristics of ticket cards collected by an automatic fare collection (AFC) system. The distribution cycle, station types, and distribution volume of each station are also determined. Then, drawing on small package transportation feasibility theory, an unbalanced distribution model between production and demand (unbalanced distribution model), as well as a hybrid distribution model of loading and unloading (hybrid distribution model), is established. Application of these models to the Beijing Subway system is used to verify the efficiency and feasibility of such a hybrid distribution model. The analysis and results offer insights into usage patterns of urban rail transit ticket cards, providing solid evidence for a relative decision-making process.


2019 ◽  
Vol 11 (22) ◽  
pp. 6322 ◽  
Author(s):  
Annunziata Esposito Amideo ◽  
Stefano Starita ◽  
Maria Paola Scaparra

Urban rail transit systems are highly prone to disruptions of various nature (e.g., accidental, environmental, man-made). Railway networks are deemed as critical infrastructures given that a service interruption can prompt adverse consequences on entire communities and lead to potential far-reaching effects. Hence, the identification of optimal strategies to mitigate the negative impact of disruptive events is paramount to increase railway systems’ resilience. In this paper, we investigate several protection strategies deriving from the application of either single asset vulnerability metrics or systemic optimization models. The contribution of this paper is threefold. Firstly, a single asset metric combining connectivity, path length and flow is defined, namely the Weighted Node Importance Evaluation Index (WI). Secondly, a novel bi-level multi-criteria optimisation model, called the Railway Fortification Problem (RFP), is introduced. RFP identifies protection strategies based on stations connectivity, path length, or travel demand, considered as either individual or combined objectives. Finally, two different protection strategy approaches are applied to a Central London Underground case study: a sequential approach based on single-asset metrics and an integrated approach based on RFP. Results indicate that the integrated approach outperforms the sequential approach and identifies more robust protection plans with respect to different vulnerability criteria.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Yuning Wang ◽  
Yingzi Liang ◽  
Cong Li ◽  
Xinyuan Zhang

Urban rail transit project is a kind of typical operating public project. Adopting the PPP model can alleviate local financial pressure and improve capital use efficiency. However, many existing urban rail transit PPP projects have fallen into the dilemma of cost overrun, schedule delay, and poor product quality. The lack of reasonable project performance evaluation is considered as an important cause. This research first clarifies the meaning and characteristics of project performance evaluation by comparing and analyzing several basic concepts and relationships. Secondly, an operation performance evaluation system based on urban rail transit PPP project of a three party is constructed from a multistakeholder perspective. Finally, the best worst method and large-scale group evaluation technology are used based on the comparison of multistakeholder evaluation application scenarios and evaluation methods. A quantitative model is constructed to evaluate the operating performance of urban rail transit PPP projects and is tested and explained by a specific case study. Most current studies generally focus on the earlier stage of project performance, and this article mainly discusses and researches the operation performance of PPP projects. There, suggestions are provided for the operation performance evaluation theory and urban rail transit PPP project practices. This article focuses on the operation performance evaluation of PPP projects.


Sign in / Sign up

Export Citation Format

Share Document