Integrating an Intelligent Tutoring System into an Adaptive E-Learning Process

Author(s):  
Fatima-Zohra Hibbi ◽  
Otman Abdoun ◽  
El Khatir Haimoudi
Author(s):  
Abhishek Singh Rathore ◽  
Siddhartha Kumar Arjaria

With digitization, a rapid growth is seen in educational technology. Different formal and informal learning contents are available on the internet. Intelligent tutoring system provides personalized e-learning to the learners. Different attributes like historical data, real-time data, behavioral, and cognitive are usually used for personalization. Based on the personalization, the intelligent tutoring system aims to provide easy and effective understanding. Recent research highlights the effect of learner's behavior and emotions on effective teaching-learning process. This chapter provides a brief description of the intelligent tutoring system, current developments, instructional techniques, proposed solution, and future recommendations. The emphasis of the study is to provide insights on self-regulated learning.


Author(s):  
Wicaksono Febriantoro ◽  
Achmad Nurhadi

ASN mempunyai kewajiban pengembangan kompetensi selama minimal 20 JP/tahun. Akan tetapi tidak semua ASN dapat mengikuti pelatihan sebagai bentuk pengembangan kompetensi dikarenakan terbatasnya kuota/jumlah pelatihan tatap muka (klasikal) yang tersedia. Regulasi terbaru memberikan alternatif pembelajaran non klasikal yang tidak harus bertatap muka antara lain e-learning, distance learning dan belajar mandiri. Belajar mandiri dapat digunakan siswa untuk meningkatkan kompetensinya menggunakan berbagai sumber belajar yang tersedia baik konvensional dan berbasis pada teknologi informasi. Dalam paper ini akan dibahas salah satu tools pendukung belajar mandiri berupa perancangan intelligent tutoring system menggunakan chatbot pada mata pelatihan barang dalam keadaan terbungkus (BDKT). Perancangan menggunakan framework Design Science Research, mulai dari penetapan tujuan, perancangan desain alur percakapan chatbot, pengembangan aplikasi menggunakan chatfuel, demonstrasi melalui simulasi via Facebook Messenger dan Evaluasi Blackbox. Prototype yang dihasilkan telah dapat mengikuti alur percakapan yang dirancang dan dapat digunakan sebagai pendukung belajar mandiri kapan saja dan dimana saja (domain pelajari materi dan evaluasi) asalkan terkoneksi dengan internet.


2011 ◽  
Vol 7 (4) ◽  
pp. 65-80 ◽  
Author(s):  
Sami A. M. Al-Radaei ◽  
R. B. Mishra

Course sequencing is one of the vital aspects in an Intelligent Tutoring System (ITS) for e-learning to generate the dynamic and individual learning path for each learner. Many researchers used different methods like Genetic Algorithm, Artificial Neural Network, and TF-IDF (Term Frequency- Inverse Document Frequency) in E-leaning systems to find the adaptive course sequencing by obtaining the relation between the courseware. In this paper, heuristic semantic values are assigned to the keywords in the courseware based on the importance of the keyword. These values are used to find the relationship between courseware based on the different semantic values in them. The dynamic learning path sequencing is then generated. A comparison is made in two other important methods of course sequencing using TF-IDF and Vector Space Model (VSM) respectively, the method produces more or less same sequencing path in comparison to the two other methods. This method has been implemented using Eclipse IDE for java programming, MySQL as database, and Tomcat as web server.


Author(s):  
Sami A. M. Al-Radaei ◽  
R. B. Mishra

Course sequencing is one of the vital aspects in an Intelligent Tutoring System (ITS) for e-learning to generate the dynamic and individual learning path for each learner. Many researchers used different methods like Genetic Algorithm, Artificial Neural Network, and TF-IDF (Term Frequency- Inverse Document Frequency) in E-leaning systems to find the adaptive course sequencing by obtaining the relation between the courseware. In this paper, heuristic semantic values are assigned to the keywords in the courseware based on the importance of the keyword. These values are used to find the relationship between courseware based on the different semantic values in them. The dynamic learning path sequencing is then generated. A comparison is made in two other important methods of course sequencing using TF-IDF and Vector Space Model (VSM) respectively, the method produces more or less same sequencing path in comparison to the two other methods. This method has been implemented using Eclipse IDE for java programming, MySQL as database, and Tomcat as web server.


2021 ◽  
Vol 26 (1) ◽  
pp. 31-37
Author(s):  
Ines Šarić-Grgić ◽  
Ani Grubišić ◽  
Branko Žitko

Abstract The research investigates how note-taking practice affects the learning process in Tutomat, an intelligent tutoring system. The complete analysis includes (i) the identification of learning analytics variables to describe student-Tutomat interaction; (ii) the description of experimental student groups using learning analytics variables; (iii) data-driven clustering and (iv) the comparison of the experimental groups and revealed clusters. The results show that there is a difference in how a student interacts with Tutomat based on note-taking practice. It is revealed that the note-taking practice can be detected using the proposed learning analytics variables with the prediction accuracy of the clustering approach of 85 %.


SISTEMASI ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 28
Author(s):  
Aris Budianto ◽  
Rosihan Ari Yuana

Proses pembelajaran mata kuliah Jaringan Komputer di prodi Pendidikan Teknik Informatika (PTIK), Fakultas Keguruan dan Ilmu Pendidikan (FKIP), Universitas Sebelas Maret (UNS) terjadi sebuah gap antara Mahasiswa dari SMA dan SMK. Sebagian mahasiswa dengan latar belakang SMA belum memiliki konsep-konsep dasar Jaringan Komputer, sedangkan mahasiswa dari SMK sudah pada tahap sudah jauh lebih advance. Untuk menjembatani hal tersebut maka salah satu solusi yang bisa diimplementasikan adalah sebuah e-learning yang menyediakan sistem pembelajaran mandiri. E-learning yang dikembangkan akan menyediakan materi yang lengkap, latihan dan dan video tutorial. Pada penelitian ini, berbeda dengan E-Learning konvensional yang bersifat sama (flat) untuk setiap pengguna, E-Learning yang akan dikembangkan dilengkapi dengan Machine Learning metode Naïve bayes. Machine Learning akan membantu proses pembelajaran dengan pendekatan one-to-one, dimana sistem akan memiliki kemampuan mendeteksi kemampuan mahasiswa yang menggunakan E-Learning. Sistem menyesuaikan materi dan latihan sesuai dengan kemampuan pengguna dalam proses belajar mandiri. Dengan tutorial yang bertahap dan pendekatan yang berbeda dalam proses belajar setiap siswa diharapkan mampu meningkatkan pemahaman siswa mengenai mata kuliah Jaringan Komputer di PTIK, FKIP, UNS.


Sign in / Sign up

Export Citation Format

Share Document