Cloud Security Solution Based on Software Defined Network

Author(s):  
Shengli Zhao ◽  
Zhaochan Li ◽  
Ning Cao
Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 767
Author(s):  
Quadri Waseem ◽  
Sultan S. Alshamrani ◽  
Kashif Nisar ◽  
Wan Isni Sofiah Wan Din ◽  
Ahmed Saeed Alghamdi

The software-defined networking (SDN) paradigm has recently emerged as a trend to build various protocols, develop more reliable networks, enhance the data flow controlling, and provide security in a much simpler and flexible way. SDN helps to ease management and handle asymmetric connectivity across various nodes. It solves the problems of network and cloud security and hence provides the best solution for the safety of data on the network. Therefore, we feel the urge to research more and provide the basics of SDN forensics, mention its advantages in network especially in the cloud, and present its elaborate prospects in context with Network Forensic (NF) and Cloud Forensic (CF). In this research article, we explained in detail the NF and CF with emphasis on Network security (NS) and Cloud Security (CS). The paper also provided the various security approaches and categories. Then, an overview of the software-defined networking (SDN) is mentioned. We also discussed the use of SDN in Network Forensic and Cloud Forensic. Furthermore, to aid the SDN forensic, we presented the advantages, challenges, and issues along with future research directions of SDN in network forensic and cloud forensic, and at last, we thus express and explore the need for security in forensic based on the SDN paradigm in the form of a set of suggested recommendations.


Author(s):  
Tiejun Jia ◽  
Ximing Xiao ◽  
Fujie Zhang ◽  
Zhaohong Feng

2019 ◽  
Vol 7 (2) ◽  
pp. 342-348
Author(s):  
Vaishali Singh ◽  
Kavita Bhatia ◽  
S. K. Pandey

2018 ◽  
Vol 6 (5) ◽  
pp. 473-478
Author(s):  
K. K. Chauhan ◽  
◽  
◽  
A. K. S. Sanger

2014 ◽  
Vol 1 (1) ◽  
pp. 1-5
Author(s):  
Poonam Rawat ◽  
◽  
Neha Rawat ◽  
Shikha Singh ◽  
Awantika . ◽  
...  

Author(s):  
Jin Han ◽  
Jing Zhan ◽  
Xiaoqing Xia ◽  
Xue Fan

Background: Currently, Cloud Service Provider (CSP) or third party usually proposes principles and methods for cloud security risk evaluation, while cloud users have no choice but accept them. However, since cloud users and cloud service providers have conflicts of interests, cloud users may not trust the results of security evaluation performed by the CSP. Also, different cloud users may have different security risk preferences, which makes it difficult for third party to consider all users' needs during evaluation. In addition, current security evaluation indexes for cloud are too impractical to test (e.g., indexes like interoperability, transparency, portability are not easy to be evaluated). Methods: To solve the above problems, this paper proposes a practical cloud security risk evaluation method of decision-making based on conflicting roles by using the Analytic Hierarchy Process (AHP) with Aggregation of Individual priorities (AIP). Results: Not only can our method bring forward a new index system based on risk source for cloud security and corresponding practical testing methods, but also can obtain the evaluation result with the risk preferences of conflicting roles, namely CSP and cloud users, which can lay a foundation for improving mutual trusts between the CSP and cloud users. The experiments show that the method can effectively assess the security risk of cloud platforms and in the case where the number of clouds increased by 100% and 200%, the evaluation time using our methodology increased by only by 12% and 30%. Conclusion: Our method can achieve consistent decision based on conflicting roles, high scalability and practicability for cloud security risk evaluation.


Author(s):  
D. Sowmya ◽  
S. Sivasankaran

In the cloud environment, it is difficult to provide security to the monolithic collection of data as it is easily accessed by breaking the algorithms which are based on mathematical computations and on the other hand, it takes much time for uploading and downloading the data. This paper proposes the concept of implementing quantum teleportation i.e., telecommunication + transportation in the cloud environment for the enhancement of cloud security and also to improve speed of data transfer through the quantum repeaters. This technological idea is extracted from the law of quantum physics where the particles say photons can be entangled and encoded to be teleported over large distances. As the transfer of photons called qubits allowed to travel through the optical fiber, it must be polarized and encoded with QKD (Quantum Key Distribution) for the security purpose. Then, for the enhancement of the data transfer speed, qubits are used in which the state of quantum bits can be encoded as 0 and 1 concurrently using the Shors algorithm. Then, the Quantum parallelism will help qubits to travel as fast as possible to reach the destination at a single communication channel which cannot be eavesdropped at any point because, it prevents from creating copies of transmitted quantum key due to the implementation of no-cloning theorem so that the communication parties can only receive the intended data other than the intruders.


Sign in / Sign up

Export Citation Format

Share Document