Performance Analysis of Support Vector Regression Machine Models in Day-Ahead Load Forecasting

Author(s):  
Lemuel Clark P. Velasco ◽  
Daisy Lou L. Polestico ◽  
Dominique Michelle M. Abella ◽  
Genesis T. Alegata ◽  
Gabrielle C. Luna
Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1166
Author(s):  
Bashir Musa ◽  
Nasser Yimen ◽  
Sani Isah Abba ◽  
Humphrey Hugh Adun ◽  
Mustafa Dagbasi

The prediction accuracy of support vector regression (SVR) is highly influenced by a kernel function. However, its performance suffers on large datasets, and this could be attributed to the computational limitations of kernel learning. To tackle this problem, this paper combines SVR with the emerging Harris hawks optimization (HHO) and particle swarm optimization (PSO) algorithms to form two hybrid SVR algorithms, SVR-HHO and SVR-PSO. Both the two proposed algorithms and traditional SVR were applied to load forecasting in four different states of Nigeria. The correlation coefficient (R), coefficient of determination (R2), mean square error (MSE), root mean square error (RMSE), and mean absolute percentage error (MAPE) were used as indicators to evaluate the prediction accuracy of the algorithms. The results reveal that there is an increase in performance for both SVR-HHO and SVR-PSO over traditional SVR. SVR-HHO has the highest R2 values of 0.9951, 0.8963, 0.9951, and 0.9313, the lowest MSE values of 0.0002, 0.0070, 0.0002, and 0.0080, and the lowest MAPE values of 0.1311, 0.1452, 0.0599, and 0.1817, respectively, for Kano, Abuja, Niger, and Lagos State. The results of SVR-HHO also prove more advantageous over SVR-PSO in all the states concerning load forecasting skills. This paper also designed a hybrid renewable energy system (HRES) that consists of solar photovoltaic (PV) panels, wind turbines, and batteries. As inputs, the system used solar radiation, temperature, wind speed, and the predicted load demands by SVR-HHO in all the states. The system was optimized by using the PSO algorithm to obtain the optimal configuration of the HRES that will satisfy all constraints at the minimum cost.


2016 ◽  
pp. 1161-1183 ◽  
Author(s):  
Tuncay Ozcan ◽  
Tarik Küçükdeniz ◽  
Funda Hatice Sezgin

Electricity load forecasting is crucial for electricity generation companies, distributors and other electricity market participants. In this study, several forecasting techniques are applied to time series modeling and forecasting of the hourly loads. Seasonal grey model, support vector regression, random forests, seasonal ARIMA and linear regression are benchmarked on seven data sets. A rolling forecasting model is developed and 24 hours of the next day is predicted for the last 14 days of each data set. This day-ahead forecasting model is especially important in day-ahead market activities and plant scheduling operations. Experimental results indicate that support vector regression and seasonal grey model outperforms other approaches in terms of forecast accuracy for day-ahead load forecasting.


Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1093 ◽  
Author(s):  
Wei-Chiang Hong ◽  
Guo-Feng Fan

For operational management of power plants, it is desirable to possess more precise short-term load forecasting results to guarantee the power supply and load dispatch. The empirical mode decomposition (EMD) method and the particle swarm optimization (PSO) algorithm have been successfully hybridized with the support vector regression (SVR) to produce satisfactory forecasting performance in previous studies. Decomposed intrinsic mode functions (IMFs), could be further defined as three items: item A contains the random term and the middle term; item B contains the middle term and the trend (residual) term, and item C contains the middle terms only, where the random term represents the high-frequency part of the electric load data, the middle term represents the multiple-frequency part, and the trend term represents the low-frequency part. These three items would be modeled separately by the SVR-PSO model, and the final forecasting results could be calculated as A+B-C (the defined item D). Consequently, this paper proposes a novel electric load forecasting model, namely H-EMD-SVR-PSO model, by hybridizing these three defined items to improve the forecasting accuracy. Based on electric load data from the Australian electricity market, the experimental results demonstrate that the proposed H-EMD-SVR-PSO model receives more satisfied forecasting performance than other compared models.


Sign in / Sign up

Export Citation Format

Share Document