Optimal Parameter Estimation of Solid Oxide Fuel Cell Model Using Coyote Optimization Algorithm

Author(s):  
Amlak Abaza ◽  
Ragab A. El Sehiemy ◽  
Ahmed Saeed Abdelrazek Bayoumi
2018 ◽  
Vol 226 ◽  
pp. 570-581 ◽  
Author(s):  
Rui Ma ◽  
Chen Liu ◽  
Elena Breaz ◽  
Pascal Briois ◽  
Fei Gao

2012 ◽  
Vol 45 (1) ◽  
pp. 213-224 ◽  
Author(s):  
A. Wedig ◽  
M. E. Lynch ◽  
R. Merkle ◽  
J. Maier ◽  
M. Liu

2010 ◽  
Vol 171-172 ◽  
pp. 319-322
Author(s):  
Hong Bin Zhao ◽  
Xu Liu

The simulation and analyses of a “bottoming cycle” solid oxide fuel cell–gas turbine (SOFC–GT) hybrid system at the standard atmospheric condition is presented in this paper. The fuel cell model used in this research work is based on a tubular Siemens–Westinghouse–type SOFC with 1.8MW capacity. Energy and exergy analyses of the whole system at fixed conditions are carried out. Then, comparisons of the exergy destruction and exergy efficiency of each component are also conducted to determine the potential capability of the hybrid system to generate power. Moreover, the effects of operating conditions including fuel flow rate and SOFC operating temperature on performances of the hybrid system are analyzed.


Author(s):  
Masayuki Suzuki ◽  
Naoki Shikazono ◽  
Koji Fukagata ◽  
Nobuhide Kasagi

Three-dimensional heat and mass transfer and electrochemical reaction in an anode-supported flat-tube solid oxide fuel cell (FT-SOFC) are studied. Transport and reaction phenomena mainly change in the streamwise direction. Exceptionally, hydrogen and water vapor have large concentration gradients also in the cross section perpendicular to the flow direction, because of the insufficient mass diffusion in the porous anode. Based on these results, we develop a simplified one-dimensional cell model. The distributions of temperature, current, and overpotential predicted by this model show good agreement with those obtained by the full three-dimensional simulation. We also investigate the effects of pore size, porosity and configuration of the anode on the cell performance. Extensive parametric studies reveal that, for a fixed three-phase boundary (TPB) length, rough material grains are preferable to obtain higher output voltage. In addition, when the cell has a thin anode with narrow ribs, drastic increase in the volumetric power density can be achieved with small voltage drop.


Sign in / Sign up

Export Citation Format

Share Document