The Effect of Strain Rate on Chip Formation and Cutting Process During High-Speed Cutting of A6061 Aluminum Alloy

Author(s):  
Pham Thi Hoa ◽  
Banh Tien Long ◽  
Nguyen Duc Toan ◽  
Doan Thi Huong ◽  
Pham Duc Thanh
2009 ◽  
Vol 626-627 ◽  
pp. 177-182 ◽  
Author(s):  
Wei Zhao ◽  
Ning He ◽  
Liang Li

Titanium alloys are known for their strong chemical reactivity with surrounding gas due to their high chemical affinity, especially in dry machining. This paper describes a study of chip formation characteristics under nitrogen gas media when machining Ti6Al4V alloy with WC-Co cemented carbide cutting tools at high cutting speeds. Based on the experimental study, a finite element model of two-dimensional orthogonal cutting process for Ti6Al4V alloy at different cutting conditions was developed using a commercial finite element software Deform-2D. Saw-tooth chips with adiabatic shear bands were produced in both experiments and simulations. And the enhanced cooling and anti-frictional effects of nitrogen gas upon the high speed cutting process of Ti6Al4V alloy were analyzed. Results of this investigation indicate that the anti-frictional performance of nitrogen gas has a significant effect on chip formation when machining Ti6Al4V alloy at high cutting speeds. Compared to air, Nitrogen gas is more suitable in improving the contact conditions at chip-tool interfaces and in increasing the shear band frequency of chip formation during high speed cutting of Ti6Al4V alloy.


2015 ◽  
Vol 9 (6) ◽  
pp. 775-781
Author(s):  
Norfariza Wahab ◽  
◽  
Yumi Inatsugu ◽  
Satoshi Kubota ◽  
Soo-Young Kim ◽  
...  

In recent times, numerical simulation techniques have been commonly used to estimate and predict machining parameters such as cutting forces, stresses, and temperature distribution. However, it is very difficult to estimate the flow stress of a workpiece and the friction characteristics at a tool/chip interface, particularly during a high-speed cutting process. The objective of this study is to improve the accuracy of the present method and simultaneously determine the characteristics of the flow stress of a workpiece and friction at the cutting edge under a high strain rate and temperature during the cutting process. In this study, the Johnson-Cook (JC) flow stress model is used as a function of strain, strain rate, and temperature. The friction characteristic was estimated by minimizing the difference between the predicted and measured results of principal force, thrust force, and shear angle. The shear friction equation was used to estimate the friction characteristics. Therefore, by comparing the measured values of the cutting forces with the predicted results from FEM simulations, an expression for workpiece flow stress and friction characteristics at the cutting edge during a high-speed cutting process was estimated.


1970 ◽  
Vol 36 (429) ◽  
pp. 663-668
Author(s):  
Akira YAMAMOTO ◽  
Shimesu NAKAMURA ◽  
Motosada KANDA

2003 ◽  
Vol 02 (02) ◽  
pp. 247-254 ◽  
Author(s):  
YAN LUO

Enterprise has to reduce time and cost of product development to face global competition. New technologies and machining strategies have been widely adopted in manufacturing enterprise such as high-speed cutting (HSC). Tool wear prediction will be useful for tool management and thus, reducing the manufacturing cost of HSC. This related project is developed at the Institute of Production Management, Technology and Machine Tools (PTW), TU Darmstadt. The aim of the project is to find a solution to predict tool wear by calculation for HSC. This paper focuses on chip formation analysis. Chip geometry will be generated and calculated to estimate tool wear. The paper presents an algorithm to visualize chip geometry for ball end tool and discusses further the parameters features of chip section.


2014 ◽  
Vol 625 ◽  
pp. 378-383 ◽  
Author(s):  
Norfariza Wahab ◽  
Yumi Inatsugu ◽  
Satoshi Kubota ◽  
Soo Young Kim ◽  
Hiroyuki Sasahara

Nowadays, numerical simulation technique is very popular to estimate and predict the machining parameters such as cutting forces, stresses distribution, temperature and tool wear. The objective of this study is to determine the 0.45%C steel (JIS S45C) flow stress value under high strain rate and temperature. The Johnson and Cook (JC) material model is used as a constitutive equation to describe the high speed cutting process. Compression test and orthogonal cutting test were carried out in order to obtain the required parameters in JC model. Inverse calculation method was used to determine the strain rate and temperature dependency parameter based on several cutting conditions. As a result, validity of verification of method was completed and the flow stress of S45C had been evaluated.


1963 ◽  
Vol 85 (4) ◽  
pp. 365-372 ◽  
Author(s):  
K. J. Trigger ◽  
B. F. von Turkovich

This paper presents metal-cutting data for the high-speed machining of copper and aluminum, each at two levels of purity, and over a range of workpiece temperatures from −326 deg F (80 deg K) to 550 deg F (560 deg K). It has been found that cutting behavior is influenced by purity of work material, its initial temperature, and extent of tool-chip contact. The influence of plastic deformation on chip hardness has been found to be intimately associated with the purity of the work material.


2010 ◽  
Vol 142 ◽  
pp. 11-15 ◽  
Author(s):  
Y.B. Liu ◽  
C. Zhao ◽  
X. Ji ◽  
Ping Zhou

High-speed cutting process of cutting force influence variables and variation and ordinary speed cutting are obviously different, in order to study the high-speed cutting process of different parameters on the effect of cutting force, based on five axis high-speed NC machining center, using multi-factor orthogonal test method for high speed milling of aluminum alloy impeller conducted experiments. It was analyzed that cutting force influence factors of 5-axises blade machining process. A private clamp was designed and produced, to measure the cutting force of machining process. It was observe that distribution of 3-dimension cutting forces in cutting path. It was found that the distribution rule of cutting force. With the experiment study on cutting force when high speed cutting aluminum cuprum, the influence disciplinarian of each cutting parameter on cutting force was obtained.


2020 ◽  
Vol 990 ◽  
pp. 13-17 ◽  
Author(s):  
Qi Hang Shi ◽  
Zong Cheng Hao ◽  
Shuai Wang ◽  
Xiu Li Fu ◽  
Hui Wang

Aluminum alloy 7050-T7451 is widely used in aeronautical large structural parts, and high speed cutting is often used in machining. The serrated chip is a critical state for chip formation in high speed cutting, and its formation and control mechanism are of great significance for actual machining. To study the chip formation of high speed cutting aluminum alloy 7050-T7451, the chips at different cutting speeds are obtained by high speed cutting experiments. Combined with microscopic observation, the chip shape evolution, chip localization fracture process and mechanism of different cutting speeds are analyzed. The morphological evolution of chips and the mechanism of chip breaking during high speed cutting of aluminum alloy are revealed. According to the machined surface of the chip root and the angle of the chip, the formation mechanism of the curl radius formed by the chip is analyzed. The critical cutting speed of plastic-brittle transformation of aluminum alloy 7050-T7451 in high speed cutting is obtained by studying the critical condition for strip-to-serration transition of chip morphology.


1971 ◽  
Vol 37 (433) ◽  
pp. 138-144
Author(s):  
Akira YAMAMOTO ◽  
Motosada KANDA ◽  
Takahiro TSUJINAGA

2015 ◽  
Vol 84 (9-12) ◽  
pp. 2257-2264 ◽  
Author(s):  
Jin-quan Li ◽  
Rui Zhang ◽  
Hai-lin Guo ◽  
Zhi-jun Zhang

Sign in / Sign up

Export Citation Format

Share Document