Handling Dynamics of an Ultra-Lightweight Vehicle During Load Variation

Author(s):  
Anna Lidfors Lindqvist ◽  
Paul D. Walker
Keyword(s):  
2018 ◽  
Vol 8 (9) ◽  
pp. 1462 ◽  
Author(s):  
Xianfu Zhang ◽  
Shouqian Sun ◽  
Chao Li ◽  
Zhichuan Tang

As lower-limb exoskeleton and prostheses are developed to become smarter and to deploy man–machine collaboration, accurate gait recognition is crucial, as it contributes to the realization of real-time control. Many researchers choose surface electromyogram (sEMG) signals to recognize the gait and control the lower-limb exoskeleton (or prostheses). However, several factors still affect its applicability, of which variation in the loads is an essential one. This study aims to (1) investigate the effect of load variation on gait recognition; and to (2) discuss whether a lower-limb exoskeleton control system trained by sEMG from different loads works well in multi-load applications. In our experiment, 10 male college students were selected to walk on a treadmill at three different speeds (V3 = 3 km/h, V5 = 5 km/h, and V7 = 7 km/h) with four different loads (L0 = 0, L20 = 20%, L30 = 30%, L40 = 40% of body weight, respectively), and 50 gait cycles were performed. Back propagation neural networks (BPNNs) were used for gait recognition, and a support vector machine (SVM) and k-nearest neighbor (k-NN) were used for comparison. The result showed that (1) load variation has significant effects on the accuracy of gait recognition (p < 0.05) under the three speeds when the loads range in L0, L20, L30, or L40, but no significant impact is found when the loads range in L0, L20, or L30. The least significant difference (LSD) post hoc, which can explore all possible pair-wise comparisons of means that comprise a factor using the equivalent of multiple t-tests, reveals that there is a significant difference between the L40 load and the other three loads (L0, L20, L30), but no significant difference was found among the L0, L20, and L30 loads. The total mean accuracy of gait recognition of the intra-loads and inter-loads was 91.81%, and 69.42%, respectively. (2) When the training data was taken from more types of loads, a higher accuracy in gait recognition was obtained at each speed, and the statistical analysis shows that there was a substantial influence for the kinds of loads in the training set on the gait recognition accuracy (p < 0.001). It can be concluded that an exoskeleton (or prosthesis) control system that is trained in a single load or the parts of loads is insufficient in the face of multi-load applications.


2021 ◽  
Vol 1 ◽  
pp. 1-None
Author(s):  
Alexis Bénard ◽  
Hélène Henri ◽  
Camille Noûs ◽  
Fabrice Vavre ◽  
Natacha Kremer

Author(s):  
Hidayat Hidayat

The use of metal in the industrial world, especially ST60 Steel, is a very vital need, this can be seen from the increasing number of machine or equipment components or construction parts made of steel. Hardness is one of the mechanical properties that is often used as a guide in selecting materials for an equipment component. To find out the hardness price of a material, various testing methods can be used, including the Vickers method, which is tested by applying a force to the indented diamond pyramid against the material for which the hardness value is determined. The amount of hardness value is determined by the magnitude of the loading force divided by the area of indentation. In this study, what was investigated was the effect of force on the hardness of the Vickers method. The results showed that the load variation had little effect on the results of the Vickers hardness value, especially for high loads (100 Kgf). The average hardness value for the mild steel being tested is 163 HV and 168 HV, the highest hardness value is 174 HV and the lowest hardness value is 156 HV, so that a tolerance of ± 10 HV commonly used in the Vickers test is sufficient.Keywords: Hardness, ST 60 Steel , Loading Variations, Vickers Test


Author(s):  
Timothy L. Krantz

Abstract Two versions of the planetary reduction stages from U.S. Army OH-58 helicopter main rotor transmissions were tested at the NASA Lewis Research Center. One sequential and one nonsequential planetary were tested. Sun gear and ring gear teeth strains were measured, and stresses were calculated from the strains. The alternating stress at the fillet of both the loaded and unloaded sides of the teeth and at the root of the sun gear teeth are reported. Typical stress variations as the gear tooth moves through the mesh are illustrated. At the tooth root location of the thin-rimmed sun gear, a significant stress was produced by a phenomenon other than the passing of a planet gear. The load variation among the planets was studied. Each planet produced its own distinctive load distribution on the ring and sun gears. The load variation was less for a three-planet, nonsequential design as compared to that of a four-planet, sequential design. The results reported enhance the data base for gear stress levels and provide data for the validation of analytical methods.


Sign in / Sign up

Export Citation Format

Share Document