Convergence Study on the C-Beam Using Joint Modes Based on Trial Vector Derivatives

Author(s):  
Florian Pichler ◽  
Wolfgang Witteveen
2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Behzad Ghanbari

We aim to study the convergence of the homotopy analysis method (HAM in short) for solving special nonlinear Volterra-Fredholm integrodifferential equations. The sufficient condition for the convergence of the method is briefly addressed. Some illustrative examples are also presented to demonstrate the validity and applicability of the technique. Comparison of the obtained results HAM with exact solution shows that the method is reliable and capable of providing analytic treatment for solving such equations.


2009 ◽  
Author(s):  
Spyros A. Kinnas ◽  
Shu-Hao Chang ◽  
Yi-Hsiang Yu ◽  
Lei He

This paper presents the analysis of the performance for podded and ducted propellers using a hybrid numerical method, which couples a vortex lattice method (MPUF-3A) for the unsteady analysis of propellers and a viscous flow solver (NS-3X or FLUENT) for the prediction of the viscous flow around propulsors and the drag force on the pod and duct surfaces. The time averaged propeller force distributions are considered as source terms (body force) in the momentum equations of NS-3X and FLUENT. The effects of viscosity on the effective wake and on the performance of the propeller blade, as well as on the predicted pod and duct forces, are assessed. The convergence study of circulation distributions with number of lattices is reported in the ducted propeller case. Finally, the prediction of the performance for podded propellers (both single pull-type and twin-type) and ducted propellers from the present method is validated against existing experimental data.


Sign in / Sign up

Export Citation Format

Share Document