Convergence study of Chinese carbon intensity

2015 ◽  
pp. 491-495
Author(s):  
Bo Wang
2020 ◽  
Vol 12 (19) ◽  
pp. 8016
Author(s):  
Feng Wang ◽  
Min Wu ◽  
Jiachen Hong

To achieve the national carbon intensity (NCI) target, China should adopt effective mitigation measures. This paper aims to examine the effects of key mitigation measures on NCI. Using the input-output table in 2017, this paper establishes the elasticity model of NCI to investigate the effects of industrial development, intermediate input coefficients, energy efficiency, and residential energy saving on NCI, and further evaluates the contributions of key measures on achieving NCI target. The results are shown as follows. First, the development of seven sectors will promote the increase of NCI while that of 21 sectors will reduce NCI. Second, NCI will decrease significantly with the descending of intermediate input coefficients of sectors, especially electricity production and supply. Third, improving energy efficiency and residential energy saving degree could reduce NCI, but the latter has limited contribution. Fourth, the development of all sectors will reduce NCI by 10.11% in 2017–2022 if sectors could continue the historical development trends. Fifth, assuming that sectors with rising intermediate input coefficients would keep their coefficients unchanged in the predicting period and sectors with descending coefficients would continue the historical descending trend, the improvement of technology and management of all sectors will reduce NCI by 14.02% in 2017–2022.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Peng Wang ◽  
Morten Ryberg ◽  
Yi Yang ◽  
Kuishuang Feng ◽  
Sami Kara ◽  
...  

AbstractSteel production is a difficult-to-mitigate sector that challenges climate mitigation commitments. Efforts for future decarbonization can benefit from understanding its progress to date. Here we report on greenhouse gas emissions from global steel production over the past century (1900-2015) by combining material flow analysis and life cycle assessment. We find that ~45 Gt steel was produced in this period leading to emissions of ~147 Gt CO2-eq. Significant improvement in process efficiency (~67%) was achieved, but was offset by a 44-fold increase in annual steel production, resulting in a 17-fold net increase in annual emissions. Despite some regional technical improvements, the industry’s decarbonization progress at the global scale has largely stagnated since 1995 mainly due to expanded production in emerging countries with high carbon intensity. Our analysis of future scenarios indicates that the expected demand expansion in these countries may jeopardize steel industry’s prospects for following 1.5 °C emission reduction pathways. To achieve the Paris climate goals, there is an urgent need for rapid implementation of joint supply- and demand-side mitigation measures around the world in consideration of regional conditions.


Sign in / Sign up

Export Citation Format

Share Document