scholarly journals Applying Deep Learning to Predicting Dementia and Mild Cognitive Impairment

Author(s):  
Daniel Stamate ◽  
Richard Smith ◽  
Ruslan Tsygancov ◽  
Rostislav Vorobev ◽  
John Langham ◽  
...  
2019 ◽  
Vol 9 (9) ◽  
pp. 217 ◽  
Author(s):  
Gorji ◽  
Kaabouch

Mild cognitive impairment (MCI) is an intermediary stage condition between healthy people and Alzheimer’s disease (AD) patients and other dementias. AD is a progressive and irreversible neurodegenerative disorder, which is a significant threat to people, age 65 and older. Although MCI does not always lead to AD, an early diagnosis at the stage of MCI can be very helpful in identifying people who are at risk of AD. Moreover, the early diagnosis of MCI can lead to more effective treatment, or at least, significantly delay the disease’s progress, and can lead to social and financial benefits. Magnetic resonance imaging (MRI), which has become a significant tool for the diagnosis of MCI and AD, can provide neuropsychological data for analyzing the variance in brain structure and function. MCI is divided into early and late MCI (EMCI and LMCI) and sadly, there is no clear differentiation between the brain structure of healthy people and MCI patients, especially in the EMCI stage. This paper aims to use a deep learning approach, which is one of the most powerful branches of machine learning, to discriminate between healthy people and the two types of MCI groups based on MRI results. The convolutional neural network (CNN) with an efficient architecture was used to extract high-quality features from MRIs to classify people into healthy, EMCI, or LMCI groups. The MRIs of 600 individuals used in this study included 200 control normal (CN) people, 200 EMCI patients, and 200 LMCI patients. This study randomly selected 70 percent of the data to train our model and 30 percent for the test set. The results showed the best overall classification between CN and LMCI groups in the sagittal view with an accuracy of 94.54 percent. In addition, 93.96 percent and 93.00 percent accuracy were reached for the pairs of EMCI/LMCI and CN/EMCI, respectively.


2015 ◽  
Vol 11 (12) ◽  
pp. 1489-1499 ◽  
Author(s):  
Vamsi K. Ithapu ◽  
Vikas Singh ◽  
Ozioma C. Okonkwo ◽  
Richard J. Chappell ◽  
N. Maritza Dowling ◽  
...  

NeuroImage ◽  
2019 ◽  
Vol 189 ◽  
pp. 276-287 ◽  
Author(s):  
Simeon Spasov ◽  
Luca Passamonti ◽  
Andrea Duggento ◽  
Pietro Liò ◽  
Nicola Toschi

2021 ◽  
Vol 7 ◽  
pp. e560
Author(s):  
Ethan Ocasio ◽  
Tim Q. Duong

Background While there is no cure for Alzheimer’s disease (AD), early diagnosis and accurate prognosis of AD may enable or encourage lifestyle changes, neurocognitive enrichment, and interventions to slow the rate of cognitive decline. The goal of our study was to develop and evaluate a novel deep learning algorithm to predict mild cognitive impairment (MCI) to AD conversion at three years after diagnosis using longitudinal and whole-brain 3D MRI. Methods This retrospective study consisted of 320 normal cognition (NC), 554 MCI, and 237 AD patients. Longitudinal data include T1-weighted 3D MRI obtained at initial presentation with diagnosis of MCI and at 12-month follow up. Whole-brain 3D MRI volumes were used without a priori segmentation of regional structural volumes or cortical thicknesses. MRIs of the AD and NC cohort were used to train a deep learning classification model to obtain weights to be applied via transfer learning for prediction of MCI patient conversion to AD at three years post-diagnosis. Two (zero-shot and fine tuning) transfer learning methods were evaluated. Three different convolutional neural network (CNN) architectures (sequential, residual bottleneck, and wide residual) were compared. Data were split into 75% and 25% for training and testing, respectively, with 4-fold cross validation. Prediction accuracy was evaluated using balanced accuracy. Heatmaps were generated. Results The sequential convolutional approach yielded slightly better performance than the residual-based architecture, the zero-shot transfer learning approach yielded better performance than fine tuning, and CNN using longitudinal data performed better than CNN using a single timepoint MRI in predicting MCI conversion to AD. The best CNN model for predicting MCI conversion to AD at three years after diagnosis yielded a balanced accuracy of 0.793. Heatmaps of the prediction model showed regions most relevant to the network including the lateral ventricles, periventricular white matter and cortical gray matter. Conclusions This is the first convolutional neural network model using longitudinal and whole-brain 3D MRIs without extracting regional brain volumes or cortical thicknesses to predict future MCI to AD conversion at 3 years after diagnosis. This approach could lead to early prediction of patients who are likely to progress to AD and thus may lead to better management of the disease.


2021 ◽  
Author(s):  
Natthanan Ruengchaijatuporn ◽  
Itthi Chatnuntawech ◽  
Surat Teerapittayanon ◽  
Sira Sriswasdi ◽  
Sirawaj Itthipuripat ◽  
...  

Mild cognitive impairment (MCI) is an early stage of age-inappropriate cognitive decline, which could develop into dementia – an untreatable neurodegenerative disorder. An early detection of MCI is a crucial step for timely prevention and intervention. To tackle this problem, recent studies have developed deep learning models to detect MCI and various types of dementia using data obtained from the classic clock-drawing test (CDT), a popular neuropsychological screening tool that can be easily and rapidly implemented for assessing cognitive impairments in an aging population. While these models succeed at distinguishing severe forms of dementia, it is still difficult to predict the early stage of the disease using the CDT data alone. Also, the state-of-the-art deep learning techniques still face the black-box challenges, making it questionable to implement them in the clinical setting. Here, we propose a novel deep learning modeling framework that incorporates data from multiple drawing tasks including the CDT, cube-copying, and trail-making tasks obtained from a digital platform. Using self-attention and soft-label methods, our model achieves much higher classification performance at detecting MCI compared to those of a well-established convolutional neural network model. Moreover, our model can highlight features of the MCI data that considerably deviate from those of the healthy aging population, offering accurate predictions for detecting MCI along with visual explanation that aids the interpretation of the deep learning model.


Author(s):  
ChangZu Chen ◽  
Qi Wu ◽  
ZuoYong Li ◽  
Lei Xiao ◽  
Zhong Yi Hu

Aim and Objective: Fast and accurate diagnosis of Alzheimer's disease is very important for the care and further treatment of patients. Along with the development of deep learning, impressive progress has also been made in the automatic diagnosis of AD. Most existing studies on automatic diagnosis are concerned with a single base network, whose accuracy for disease diagnosis still needs to be improved. This study was undertaken to propose a method to improve the accuracy of automatic diagnosis of AD. Materials and Methods: MRI image data from the Alzheimer’s Disease Neuroimaging Initiative were used to train a deep learning model to achieve computer-aided diagnosis of Alzheimer's disease. The data consisted of 138 with AD, 280 with mild cognitive impairment, and 138 normal controls. Here, a new deeply-fused net is proposed, which combines several deep convolutional neural networks, thereby avoiding the error of a single base network and increasing the classification accuracy and generalization capacity. Results: Experiments show that when differentiating between patients with AD, mild cognitive impairment, and normal controls on a subset of the ADNI database without data leakage, the new architecture improves the accuracy by about 4 percentage points as compared to a single standard base network. Conclusion: This new approach exhibits better performance, but there is still much to be done before its clinical application. In the future, greater research effort will be devoted to improving the performance of the deeply-fused net.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Kanghan Oh ◽  
Young-Chul Chung ◽  
Ko Woon Kim ◽  
Woo-Sung Kim ◽  
Il-Seok Oh

AbstractRecently, deep-learning-based approaches have been proposed for the classification of neuroimaging data related to Alzheimer’s disease (AD), and significant progress has been made. However, end-to-end learning that is capable of maximizing the impact of deep learning has yet to receive much attention due to the endemic challenge of neuroimaging caused by the scarcity of data. Thus, this study presents an approach meant to encourage the end-to-end learning of a volumetric convolutional neural network (CNN) model for four binary classification tasks (AD vs. normal control (NC), progressive mild cognitive impairment (pMCI) vs. NC, stable mild cognitive impairment (sMCI) vs. NC and pMCI vs. sMCI) based on magnetic resonance imaging (MRI) and visualizes its outcomes in terms of the decision of the CNNs without any human intervention. In the proposed approach, we use convolutional autoencoder (CAE)-based unsupervised learning for the AD vs. NC classification task, and supervised transfer learning is applied to solve the pMCI vs. sMCI classification task. To detect the most important biomarkers related to AD and pMCI, a gradient-based visualization method that approximates the spatial influence of the CNN model’s decision was applied. To validate the contributions of this study, we conducted experiments on the ADNI database, and the results demonstrated that the proposed approach achieved the accuracies of 86.60% and 73.95% for the AD and pMCI classification tasks respectively, outperforming other network models. In the visualization results, the temporal and parietal lobes were identified as key regions for classification.


Sign in / Sign up

Export Citation Format

Share Document