Hardware in the Loop Control Based on the Open Source Simulation Environment

Author(s):  
Damian Wroński ◽  
Grzegorz Granosik
2012 ◽  
Vol 490-495 ◽  
pp. 13-18 ◽  
Author(s):  
Ran Chen ◽  
Lin Mi ◽  
Wei Tan

Hardware-in-the-loop simulation (HILS) is a scheme that incorporates some hardware components of primary concern in the numerical simulation environment. This paper discusses the implementation and benefits of using the HIL testing system for electronic control unit of dual-clutch transmission (DCT) vehicle.


2017 ◽  
Vol 8 (4) ◽  
pp. 41 ◽  
Author(s):  
Anjana P Das ◽  
Sabu M Thampi

In underwater sensor network(UWSN) research, it is highly expensive to deploy a complete test bed involving complex network structure and data links to validate a network protocol or an algorithm. This practical challenge points to the need of a simulation environment which can reproduce the actual underwater scenario without the loss of generality. Since so many simulators are proposed for UWSN simulation, the selection of an appropriate tool based on the research requirement is very important in validation and interpretation of results. This paper provides an in-depth survey of different simulation tools available for UWSN simulation. We compared the features offered by each tool, pre-requirements, and provide the run time experiences of some of the open source tools. We conducted simulation of sample scenarios in some of the open source tools and compared the results. This survey helps a researcher to identify a simulation tool satisfying their specific research requirements.


2010 ◽  
Vol 1 (1/2/3) ◽  
pp. 5 ◽  
Author(s):  
Vasily V. Balashov ◽  
Anatoly G. Bakhmurov ◽  
Maxim V. Chistolinov ◽  
Ruslan L. Smeliansky ◽  
Dmitry Y. Volkanov ◽  
...  

2018 ◽  
Author(s):  
Arthur V.Lara ◽  
Iuro B. P. Nascimento ◽  
Janier Arias-Garcia ◽  
Leandro Buss Becker ◽  
Guilherme V. Raffo

1998 ◽  
Vol 1634 (1) ◽  
pp. 130-135 ◽  
Author(s):  
Darcy Bullock ◽  
Alison Catarella

Features and operating modes of the current generation of actuated controllers have evolved to the point where there is a significant difference between the configuration parameters associated with an actuated controller and the information obtained from traffic signal system optimization packages such as TRANSYT 7F and PASSER II. As a result, TRANSYT 7F and PASSER II give no guidance on the impact or sensitivity of many actuated control parameters on a traffic signal system’s performance. Furthermore, none of the current generation of microscopic simulation models is detailed enough to evaluate the effect particular features, such as cycle transition algorithms or return from preemption algorithms, have on overall system performance. To address this need, an enhancement made to the CORSIM package that allows physical controllers to be connected to CORSIM is described in this paper. In this arrangement, CORSIM provides the microscopic simulation and tabulation of measures of effectiveness (MOEs). However, instead of CORSIM emulating controller features, CORSIM sends detector information to the physical controllers and reads back phase indications. This type of simulation is often referred to as hardware-in-the-loop. Since CORSIM tabulates performance MOEs, qualitative before-and-after measurements can be obtained for any hardware conforming to the NEMA TS-1 electrical standard for phase outputs and detector inputs. To validate the performance of this hardware-in-the-loop approach, an evaluation is presented that shows there is no evidence of a significant statistical difference in MOEs between the internal control algorithm and the hardware-in-the-loop control algorithm for both a fixed time and actuated controller.


Sign in / Sign up

Export Citation Format

Share Document