scholarly journals Respiratory Activity Classification Based on Ballistocardiogram Analysis

Author(s):  
Mohamed Chiheb Ben Nasr ◽  
Sofia Ben Jebara ◽  
Samuel Otis ◽  
Bessam Abdulrazak ◽  
Neila Mezghani
2001 ◽  
Vol 91 (6) ◽  
pp. 2703-2712 ◽  
Author(s):  
Stephen M. Johnson ◽  
Julia E. R. Wilkerson ◽  
Daniel R. Henderson ◽  
Michael R. Wenninger ◽  
Gordon S. Mitchell

Brain stem preparations from adult turtles were used to determine how bath-applied serotonin (5-HT) alters respiration-related hypoglossal activity in a mature vertebrate. 5-HT (5–20 μM) reversibly decreased integrated burst amplitude by ∼45% ( P < 0.05); burst frequency decreased in a dose-dependent manner with 20 μM abolishing bursts in 9 of 13 preparations ( P < 0.05). These 5-HT-dependent effects were mimicked by application of a 5-HT1A agonist, but not a 5-HT1B agonist, and were abolished by the broad-spectrum 5-HT antagonist, methiothepin. During 5-HT (20 μM) washout, frequency rebounded to levels above the original baseline for 40 min ( P < 0.05) and remained above baseline for 2 h. A 5-HT3 antagonist (tropesitron) blocked the post-5-HT rebound and persistent frequency increase. A 5-HT3 agonist (phenylbiguanide) increased frequency during and after bath application ( P < 0.05). When phenylbiguanide was applied to the brain stem of brain stem/spinal cord preparations, there was a persistent frequency increase ( P < 0.05), but neither spinal-expiratory nor -inspiratory burst amplitude were altered. The 5-HT3receptor-dependent persistent frequency increase represents a unique model of plasticity in vertebrate rhythm generation.


Author(s):  
Kholoud Maswadi ◽  
Norjihan Abdul Ghani ◽  
Suraya Hamid ◽  
Muhammads Babar Rasheed

Author(s):  
Hovannes Kulhandjian ◽  
Narayanan Ramachandran ◽  
Michel Kulhandjian ◽  
Claude D'Amours

Healthcare ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 884
Author(s):  
Antonio García-Domínguez ◽  
Carlos E. Galván-Tejada ◽  
Ramón F. Brena ◽  
Antonio A. Aguileta ◽  
Jorge I. Galván-Tejada ◽  
...  

Children’s healthcare is a relevant issue, especially the prevention of domestic accidents, since it has even been defined as a global health problem. Children’s activity classification generally uses sensors embedded in children’s clothing, which can lead to erroneous measurements for possible damage or mishandling. Having a non-invasive data source for a children’s activity classification model provides reliability to the monitoring system where it is applied. This work proposes the use of environmental sound as a data source for the generation of children’s activity classification models, implementing feature selection methods and classification techniques based on Bayesian networks, focused on the recognition of potentially triggering activities of domestic accidents, applicable in child monitoring systems. Two feature selection techniques were used: the Akaike criterion and genetic algorithms. Likewise, models were generated using three classifiers: naive Bayes, semi-naive Bayes and tree-augmented naive Bayes. The generated models, combining the methods of feature selection and the classifiers used, present accuracy of greater than 97% for most of them, with which we can conclude the efficiency of the proposal of the present work in the recognition of potentially detonating activities of domestic accidents.


Author(s):  
Roberto A. Sussman ◽  
Eliana Golberstein ◽  
Riccardo Polosa

We discuss the implications of possible contagion of COVID-19 through e-cigarette aerosol (ECA) for prevention and mitigation strategies during the current pandemic. This is a relevant issue when millions of vapers (and smokers) must remain under indoor confinement and/or share public outdoor spaces with non-users. The fact that the respiratory flow associated with vaping is visible (as opposed to other respiratory activities) clearly delineates a safety distance of 1–2 m along the exhaled jet to prevent direct exposure. Vaping is a relatively infrequent and intermittent respiratory activity for which we infer a mean emission rate of 79.82 droplets per puff (6–200, standard deviation 74.66) comparable to mouth breathing, it adds into shared indoor spaces (home and restaurant scenarios) a 1% extra risk of indirect COVID-19 contagion with respect to a “control case” of existing unavoidable risk from continuous breathing. As a comparative reference, this added relative risk increases to 44–176% for speaking 6–24 min per hour and 260% for coughing every 2 min. Mechanical ventilation decreases absolute emission levels but keeps the same relative risks. As long as direct exposure to the visible exhaled jet is avoided, wearing of face masks effectively protects bystanders and keeps risk estimates very low. As a consequence, protection from possible COVID-19 contagion through vaping emissions does not require extra interventions besides the standard recommendations to the general population: keeping a social separation distance of 2 m and wearing of face masks.


Author(s):  
Nathalie Samson ◽  
Charlène Nadeau ◽  
Danny Cantin ◽  
Rezkalla Farkouh ◽  
Maggy Robinson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document