Climate-Smart DSS for Future Crop Water Demand in Malaysia

2021 ◽  
pp. 439-467
Author(s):  
Md Rowshon Kamal
2021 ◽  
Author(s):  
Smaranika Mahapatra ◽  
Madan Kumar Jha

<p>Agricultural sector, being the largest consumer of water is greatly affected by climatic variability and disasters. Most parts of the world already face an enormous challenge in meeting competitive and conflicting multi-sector water demands. Climate change has further exacerbated this challenge by putting the sustainability of current cropping patterns and irrigation practices in question. For ensuring climate-resilient food production, it is crucial to examine the patterns of the projected climate and potential impacts on the agricultural sector at a basin scale. Hence, this study was carried out for an already water-scarce basin, Rushikulya River basin (RRB), located in the coastal region of eastern India. The bias-corrected NorESM2-MM general circulation model of Coupled Model Intercomparison Project-6 (CMIP6) was used in this study under four shared socioeconomic pathway (SSPs) scenarios, namely SSP126, SSP245, SSP370 and SSP585. The projected climatic parameters and crop water demands of the basin were analyzed assuming existing cropping pattern in the future. Analysis of the results reveals a significant and rapid increase in the temperature at a rate of 0.02-0.5ºC/year during 2026-2100 under all SSPs except SSP126, whereas the rainfall is expected to increase slightly during 2026-2100 as compared to the baseline period (1990-2016), especially in the far future (2076-2100) under all the SSPs. In contrast, monsoon rainfall is predicted to decrease under SSP245 and SSP370, while a slight increase in the monsoon rainfall is evident under SSP126 and SSP585. Although the rainy days will decrease slightly in the future 25-year time window, the number of heavy rainfall events is predicted to increase by two to three times. Also, retrospective analysis of rainfall and evapotranspiration suggested an existence of rainfall deficit (rainfall-evapotranspiration) in the basin throughout the year, except during July to September. The rainfall deficit in the basin during 2026-2100 is found to remain more or less same in the non-monsoon season, except for the month of October under SSP245, SSP370 and SSP585 scenarios where deficit increases by two folds. Rainfall is expected to be in surplus by 4 to 5 times higher under all SSPs except for SSP245. As to the evapotranspiration, an insignificant increasing trend is observed under future climatic condition with only 2 to 4% rise in the crop water demand compared to the baseline period. As the basin is already water stressed during most months in a year under baseline and future climatic conditions, continuing the current practice of monsoon paddy dominant cultivation in the basin will further aggravate this situation. The results of this study will be helpful in formulating sustainable irrigation plans and adaptation measures to address climate-induced water stress in the basin.</p><p><strong>Keywords:</strong> Climate change; CMIP6; SSP; Monsoon rainfall; Temperature; Crop water demand.</p>


Irriga ◽  
2002 ◽  
Vol 7 (3) ◽  
pp. 185-190
Author(s):  
Ana Alexandrina Gama da Silva ◽  
Antonio Evaldo Klar

DEMANDA HÍDRICA DO MARACUJAZEIRO AMARELO (Passiflora edulis Sims f. flavicarpa Deg.)   Ana Alexandrina Gama da SilvaEmbrapa Tabuleiros Costeiros, CP 44, CEP 49025-040, Aracaju, SE. E-mail: [email protected] Evaldo KlarDepartamento de Engenharia Rural, Faculdade de Ciências Agronômicas, Universidade Estadual Paulista, CP 237, CEP 18603-970, Botucatu, SP. E-mail: [email protected] Científico do CNPq   1 RESUMO  Determinou-se à demanda hídrica e o coeficiente de cultivo (Kc) do maracujá amarelo (Passiflora edulis Sims f. flavicarpa Deg.), seleção Sul-Brasil, cultivado sob irrigação localizada, no município de Botucatu-SP (22o 51’ S,  48o 26’ W). A evapotranspiração máxima da cultura (ETc) e a evapotranspiração de referência (ETo) foram medidas em lisímetros de nível de lençol freático constante, durante o período de 29 de setembro de 2000 a 20 de julho de 2001. Os valores da ETc e ETo foram de 954,98 mm e  1.069,21 mm, respectivamente, durante todo o período medido. Os valores de Kc variaram de 0,42 a 1,12, com os valores máximos registrados entre 150 e 210 dias após o transplantio das mudas no campo (DAT), período correspondente aos estádios fenológicos de florescimento e formação dos frutos.  UNITERMOS: Passiflora edulis, evapotranspiração, coeficiente de cultivo (Kc).   SILVA, A.A.G. da, KLAR, A.E.  YELLOW PASSION FRUIT (Passiflora edulis Sims f. flavicarpa Deg.) CROP: WATER DEMAND.   2 ABSTRACT  Crop water demand and crop water coefficient (Kc = ETc/ETo) of yellow passion fruit were evaluated in constant level lysimeters under drip irrigation from September 21, 2000 to July 31, 2001 in Botucatu-SP. The maximum crop water demand (ETc) and the Reference Evapotranspiration (ETo), measured by lysimeters, were 954.98 mm and 1,069.21 mm, respectively, during all period measured. The values of Kc varied from 0.42 to 1.12  with maximum values registered from 150 to 210 days following transplanting during flowering and fruit formation  phases.  KEYWORDS: Passiflora edulis, evapotranspiration, crop coefficient (Kc). 


2019 ◽  
Vol 5 (4) ◽  
pp. 1859-1875 ◽  
Author(s):  
Alemu Ademe Bekele ◽  
Santosh Murlidhar Pingale ◽  
Samuel Dagalo Hatiye ◽  
Alemayehu Kasaye Tilahun

2020 ◽  
Vol 12 (8) ◽  
pp. 3437 ◽  
Author(s):  
Saleem A. Salman ◽  
Shamsuddin Shahid ◽  
Haitham Abdulmohsin Afan ◽  
Mohammed Sanusi Shiru ◽  
Nadhir Al-Ansari ◽  
...  

Decreases in climatic water availability (CWA) and increases in crop water demand (CWD) in the background of climate change are a major concern in arid regions because of less water availability and higher irrigation requirements for crop production. Assessment of the spatiotemporal changes in CWA and CWD is important for the adaptation of irrigated agriculture to climate change for such regions. The recent changes in CWA and CWD during growing seasons of major crops have been assessed for Iraq where rapid changes in climate have been noticed in recent decades. Gridded precipitation of the global precipitation climatology center (GPCC) and gridded temperature of the climate research unit (CRU) having a spatial resolution of 0.5°, were used for the estimation of CWA and CWD using simple water balance equations. The Mann–Kendall (MK) test and one of its modified versions which can consider long-term persistence in time series, were used to estimate trends in CWA for the period 1961–2013. In addition, the changes in CWD between early (1961–1990) and late (1984–2013) periods were evaluated using the Wilcoxon rank test. The results revealed a deficit in water in all the seasons in most of the country while a surplus in the northern highlands in all the seasons except summer was observed. A significant reduction in the annual amount of CWA at a rate of −1 to −13 mm/year was observed at 0.5 level of significance in most of Iraq except in the north. Decreasing trends in CWA in spring (−0.4 to −1.8 mm/year), summer (−5.0 to −11 mm/year) and autumn (0.3 to −0.6 mm/year), and almost no change in winter was observed. The CWA during the growing season of summer crop (millet and sorghum) was found to decrease significantly in most of Iraq except in the north. The comparison of CWD revealed an increase in agricultural water needs in the late period (1984–2013) compared to the early period (1961–1990) by 1.0–8.0, 1.0–14, 15–30, 14–27 and 0.0–10 mm for wheat, barley, millet, sorghum and potato, respectively. The highest increase in CWD was found in April, October, June, June and April for wheat, barley, millet, sorghum and potato, respectively.


2017 ◽  
Vol 7 (12) ◽  
pp. 901-905 ◽  
Author(s):  
Daniel W. Urban ◽  
Justin Sheffield ◽  
David B. Lobell

2004 ◽  
pp. 273-278
Author(s):  
D. Neilsen ◽  
C.A.S Smith ◽  
G. Frank ◽  
W.O. Koch ◽  
P. Parchomchuk

2008 ◽  
Vol 23 (9) ◽  
pp. 1685-1712 ◽  
Author(s):  
Raffaele Casa ◽  
Matteo Rossi ◽  
Giuseppe Sappa ◽  
Antonio Trotta

2004 ◽  
Vol 55 (12) ◽  
pp. 1227 ◽  
Author(s):  
Enli Wang ◽  
Chris J. Smith ◽  
Warren J. Bond ◽  
Kirsten Verburg

Vapour pressure deficit (VPD) has a significant effect on the amount of water required by the crop to maintain optimal growth. Data required to calculate the mean VPD on a daily basis are rarely available, and most models use approximations to estimate it. In APSIM (Agricultural Production Systems Simulator), VPD is estimated from daily maximum and minimum temperatures with the assumption that the minimum temperature equals dew point, and there is little change in vapour pressure or dew point during any one day. The accuracy of such VPD estimations was assessed using data collected every 15 min near Wagga Wagga in New South Wales, Australia. Actual vapour pressure of the air ranged from 0.5 to 2.5 kPa. For more than 75% of the time its variation was less than 20%, and the maximum variation was up to 50%. Daytime mean VPD ranged from 0 to 5.3 kPa. Daily minimum temperature was found to be a poor estimate of dew point temperature, being higher than dew point in summer and lower in winter. Thus the prediction of vapour pressure was poor. Vapour pressure at 0900 hours was a better estimate of daily mean vapour pressure. Despite the poor estimation of vapour pressure, daytime mean VPD was predicted reasonably well using daily maximum and minimum temperatures. If the vapour pressure at 0900 hours from the SILO Patched Point Dataset was used as the actual daily mean vapour pressure, the accuracy of daytime VPD estimation was further improved. Simulations using historical weather data for 1957–2002 show that such improved accuracy in daytime VPD estimation slightly increased simulated crop yield and deep drainage, while slightly reducing crop water uptake. Comparison of the APSIM RUE/TE and CERES-Wheat approaches for modelling potential transpiration revealed differences in crop water demand estimated by the two approaches. Although the differences had a small effect on the probability distribution of simulated long-term wheat yield, water uptake, and deep drainage, this finding highlights the need for a scientific re-appraisal of the APSIM RUE/TE and energy balance approaches for the estimation of crop demand, which will have implications for modelling crop growth under water-limited conditions and calculation of water required to maintain maximum growth.


Sign in / Sign up

Export Citation Format

Share Document