scholarly journals Unified Multisensory Perception: Weakly-Supervised Audio-Visual Video Parsing

Author(s):  
Yapeng Tian ◽  
Dingzeyu Li ◽  
Chenliang Xu
Author(s):  
Bruno and

Multisensory interactions in perception are pervasive and fundamental, as we have documented throughout this book. In this final chapter, we propose that contemporary work on multisensory processing is a paradigm shift in perception science, calling for a radical reconsideration of empirical and theoretical questions within an entirely new perspective. In making our case, we emphasize that multisensory perception is the norm, not the exception, and we remark that multisensory interactions can occur early in sensory processing. We reiterate the key notions that multisensory interactions come in different kinds and that principles of multisensory processing must be considered when tackling multisensory daily-life problems. We discuss the role of unisensory processing in a multisensory world, and we conclude by suggesting future directions for the multisensory field.


Author(s):  
Bruno and

Synaesthesia is a curious anomaly of multisensory perception. When presented with stimulation in one sensory channel, in addition to the percept usually associated with that channel (inducer) a true synaesthetic experiences a second percept in another perceptual modality (concurrent). Although synaesthesia is not pathological, true synaesthetes are relatively rare and their synaesthetic associations tend to be quite idiosyncratic. For this reason, studying synaesthesia is difficult, but exciting new experimental results are beginning to clarify what makes the brain of synaesthetes special and the mechanisms that may produce the condition. Even more importantly, the related phenomenon known as ‘natural’ crossmodal associations is instead experienced by everyone, providing another useful domain for studying multisensory interactions with important implications for understanding our preferences for products in terms of spontaneously evoked associations, as well as for choosing appropriate names, labels, and packaging in marketing applications.


Author(s):  
Berit Brogaard

Despite the recent surge in research on, and interest in, synesthesia, the mechanism underlying this condition is still unknown. Feedforward mechanisms involving overlapping receptive fields of sensory neurons as well as feedback mechanisms involving a lack of signal disinhibition have been proposed. Here I show that a broad range of studies of developmental synesthesia indicate that the mechanism underlying the phenomenon may in some cases involve the reinstatement of brain activity in sensory or cognitive streams in a way that is similar to what happens during memory retrieval of semantically associated items. In the chapter’s final sections I look at the relevance of synesthesia research, given the memory model, to our understanding of multisensory perception and common mapping patterns.


Forests ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 768
Author(s):  
Jin Pan ◽  
Xiaoming Ou ◽  
Liang Xu

Forest fires are serious disasters that affect countries all over the world. With the progress of image processing, numerous image-based surveillance systems for fires have been installed in forests. The rapid and accurate detection and grading of fire smoke can provide useful information, which helps humans to quickly control and reduce forest losses. Currently, convolutional neural networks (CNN) have yielded excellent performance in image recognition. Previous studies mostly paid attention to CNN-based image classification for fire detection. However, the research of CNN-based region detection and grading of fire is extremely scarce due to a challenging task which locates and segments fire regions using image-level annotations instead of inaccessible pixel-level labels. This paper presents a novel collaborative region detection and grading framework for fire smoke using a weakly supervised fine segmentation and a lightweight Faster R-CNN. The multi-task framework can simultaneously implement the early-stage alarm, region detection, classification, and grading of fire smoke. To provide an accurate segmentation on image-level, we propose the weakly supervised fine segmentation method, which consists of a segmentation network and a decision network. We aggregate image-level information, instead of expensive pixel-level labels, from all training images into the segmentation network, which simultaneously locates and segments fire smoke regions. To train the segmentation network using only image-level annotations, we propose a two-stage weakly supervised learning strategy, in which a novel weakly supervised loss is proposed to roughly detect the region of fire smoke, and a new region-refining segmentation algorithm is further used to accurately identify this region. The decision network incorporating a residual spatial attention module is utilized to predict the category of forest fire smoke. To reduce the complexity of the Faster R-CNN, we first introduced a knowledge distillation technique to compress the structure of this model. To grade forest fire smoke, we used a 3-input/1-output fuzzy system to evaluate the severity level. We evaluated the proposed approach using a developed fire smoke dataset, which included five different scenes varying by the fire smoke level. The proposed method exhibited competitive performance compared to state-of-the-art methods.


Sign in / Sign up

Export Citation Format

Share Document