scholarly journals Evaluating Plant Potassium Status

Author(s):  
T. Scott Murrell ◽  
Dharma Pitchay

AbstractSeveral methods exist for evaluating plant nutritional status. Looking for visual deficiency symptoms is perhaps the simplest approach, but once symptoms appear, crop performance has already been compromised. Several other techniques have been developed. All of them require correlation studies to provide plant performance interpretations. Reflectance is a remote sensing technique that detects changes in light energy reflected by plant tissue. It has proven successful in detecting nutrient deficiencies but does not yet have the ability to discriminate among more than one deficiency. Chemical assays of leaf tissue, known as tissue tests, require destructive sampling but are the standard against which other assessments are compared. Sufficiency ranges provide concentrations of each nutrient that are considered adequate for crop growth and development. They consider nutrients in isolation. Other approaches have been developed to consider how the concentration of one nutrient in tissue impacts the concentrations of other nutrients. These approaches strive to develop guidelines for maintaining nutrient balance within the plant. All approaches require large data sets for interpretation.

HortScience ◽  
1990 ◽  
Vol 25 (6) ◽  
pp. 652-655 ◽  
Author(s):  
D.E. Angeles ◽  
M.E. Sumner ◽  
N.W. Barbour

Diagnosis and Recommendation Integrated System (DRIS) norms for pineapple [Ananas comosus (L.) Merr.] were developed from 1185 observations of previously published leaf nutrient composition and yield. The data were divided into high-yielding (> 60 t·ha-1, 650 observations) and low-yielding (< 60 t·ha-1, 535 observations) sub-populations and the norms derived by standard DRIS techniques. The validity of the norms was tested using independently published sets of data from factorial experiments in which yield responses to N, P, and K had been obtained. In the case of most data sets, the new DRIS norms were able to make correct diagnoses where critical values failed to make any diagnoses for N, P, and K. Thus, the DRIS approach revealed nutrient deficiencies in the range normally considered to be sufficient. Increased precision is found in the evaluation of nutrient balance in the DRIS approach, which is ignored in the case of critical values.


Author(s):  
John A. Hunt

Spectrum-imaging is a useful technique for comparing different processing methods on very large data sets which are identical for each method. This paper is concerned with comparing methods of electron energy-loss spectroscopy (EELS) quantitative analysis on the Al-Li system. The spectrum-image analyzed here was obtained from an Al-10at%Li foil aged to produce δ' precipitates that can span the foil thickness. Two 1024 channel EELS spectra offset in energy by 1 eV were recorded and stored at each pixel in the 80x80 spectrum-image (25 Mbytes). An energy range of 39-89eV (20 channels/eV) are represented. During processing the spectra are either subtracted to create an artifact corrected difference spectrum, or the energy offset is numerically removed and the spectra are added to create a normal spectrum. The spectrum-images are processed into 2D floating-point images using methods and software described in [1].


Author(s):  
Thomas W. Shattuck ◽  
James R. Anderson ◽  
Neil W. Tindale ◽  
Peter R. Buseck

Individual particle analysis involves the study of tens of thousands of particles using automated scanning electron microscopy and elemental analysis by energy-dispersive, x-ray emission spectroscopy (EDS). EDS produces large data sets that must be analyzed using multi-variate statistical techniques. A complete study uses cluster analysis, discriminant analysis, and factor or principal components analysis (PCA). The three techniques are used in the study of particles sampled during the FeLine cruise to the mid-Pacific ocean in the summer of 1990. The mid-Pacific aerosol provides information on long range particle transport, iron deposition, sea salt ageing, and halogen chemistry.Aerosol particle data sets suffer from a number of difficulties for pattern recognition using cluster analysis. There is a great disparity in the number of observations per cluster and the range of the variables in each cluster. The variables are not normally distributed, they are subject to considerable experimental error, and many values are zero, because of finite detection limits. Many of the clusters show considerable overlap, because of natural variability, agglomeration, and chemical reactivity.


Author(s):  
Mykhajlo Klymash ◽  
Olena Hordiichuk — Bublivska ◽  
Ihor Tchaikovskyi ◽  
Oksana Urikova

In this article investigated the features of processing large arrays of information for distributed systems. A method of singular data decomposition is used to reduce the amount of data processed, eliminating redundancy. Dependencies of com­putational efficiency on distributed systems were obtained using the MPI messa­ging protocol and MapReduce node interaction software model. Were analyzed the effici­ency of the application of each technology for the processing of different sizes of data: Non — distributed systems are inefficient for large volumes of information due to low computing performance. It is proposed to use distributed systems that use the method of singular data decomposition, which will reduce the amount of information processed. The study of systems using the MPI protocol and MapReduce model obtained the dependence of the duration calculations time on the number of processes, which testify to the expediency of using distributed computing when processing large data sets. It is also found that distributed systems using MapReduce model work much more efficiently than MPI, especially with large amounts of data. MPI makes it possible to perform calculations more efficiently for small amounts of information. When increased the data sets, advisable to use the Map Reduce model.


2018 ◽  
Vol 2018 (6) ◽  
pp. 38-39
Author(s):  
Austa Parker ◽  
Yan Qu ◽  
David Hokanson ◽  
Jeff Soller ◽  
Eric Dickenson ◽  
...  

Computers ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 47
Author(s):  
Fariha Iffath ◽  
A. S. M. Kayes ◽  
Md. Tahsin Rahman ◽  
Jannatul Ferdows ◽  
Mohammad Shamsul Arefin ◽  
...  

A programming contest generally involves the host presenting a set of logical and mathematical problems to the contestants. The contestants are required to write computer programs that are capable of solving these problems. An online judge system is used to automate the judging procedure of the programs that are submitted by the users. Online judges are systems designed for the reliable evaluation of the source codes submitted by the users. Traditional online judging platforms are not ideally suitable for programming labs, as they do not support partial scoring and efficient detection of plagiarized codes. When considering this fact, in this paper, we present an online judging framework that is capable of automatic scoring of codes by detecting plagiarized contents and the level of accuracy of codes efficiently. Our system performs the detection of plagiarism by detecting fingerprints of programs and using the fingerprints to compare them instead of using the whole file. We used winnowing to select fingerprints among k-gram hash values of a source code, which was generated by the Rabin–Karp Algorithm. The proposed system is compared with the existing online judging platforms to show the superiority in terms of time efficiency, correctness, and feature availability. In addition, we evaluated our system by using large data sets and comparing the run time with MOSS, which is the widely used plagiarism detection technique.


2021 ◽  
Author(s):  
Věra Kůrková ◽  
Marcello Sanguineti
Keyword(s):  

Author(s):  
Lior Shamir

Abstract Several recent observations using large data sets of galaxies showed non-random distribution of the spin directions of spiral galaxies, even when the galaxies are too far from each other to have gravitational interaction. Here, a data set of $\sim8.7\cdot10^3$ spiral galaxies imaged by Hubble Space Telescope (HST) is used to test and profile a possible asymmetry between galaxy spin directions. The asymmetry between galaxies with opposite spin directions is compared to the asymmetry of galaxies from the Sloan Digital Sky Survey. The two data sets contain different galaxies at different redshift ranges, and each data set was annotated using a different annotation method. The results show that both data sets show a similar asymmetry in the COSMOS field, which is covered by both telescopes. Fitting the asymmetry of the galaxies to cosine dependence shows a dipole axis with probabilities of $\sim2.8\sigma$ and $\sim7.38\sigma$ in HST and SDSS, respectively. The most likely dipole axis identified in the HST galaxies is at $(\alpha=78^{\rm o},\delta=47^{\rm o})$ and is well within the $1\sigma$ error range compared to the location of the most likely dipole axis in the SDSS galaxies with $z>0.15$ , identified at $(\alpha=71^{\rm o},\delta=61^{\rm o})$ .


Sign in / Sign up

Export Citation Format

Share Document