Higgs Boson Cross Section Interpretation Using the EFT Approach

Author(s):  
Ahmed Tarek Abouelfadl Mohamed
Keyword(s):  
2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Patrick Draper ◽  
Jonathan Kozaczuk ◽  
Scott Thomas

Abstract A primary goal of a future e+e− collider program will be the precision measurement of Higgs boson properties. For practical reasons it is of interest to determine the minimal set of detector specifications required to reach this and other scientific goals. Here we investigate the precision obtainable for the e+e−Zhμ+μ−X inclusive cross section and the Higgs boson mass using the di-muon recoil method, considering a detector that has only an inner tracking system within a solenoidal magnetic field, surrounded by many nuclear interaction lengths of absorbing material, and an outer muon identification system. We find that the sensitivity achievable in these measurements with such a tracking detector is only marginally reduced compared to that expected for a general purpose detector with additional electromagnetic and hadronic calorimeter systems. The difference results mainly from multi-photon backgrounds that are not as easily rejected with tracking detectors. We also comment on the prospects for an analogous measurement of the e+e−→Zh→e+e−X inclusive cross section. Finally, we study searches for light scalars utilizing the di-muon recoil method, estimating the projected reach with a tracking or general purpose detector.


2012 ◽  
Vol 2012 (4) ◽  
Author(s):  
Charalampos Anastasiou ◽  
Stephan Buehler ◽  
Franz Herzog ◽  
Achilleas Lazopoulos
Keyword(s):  

2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
◽  
A. Tumasyan ◽  
W. Adam ◽  
J. W. Andrejkovic ◽  
T. Bergauer ◽  
...  

Abstract A search for a heavy Higgs boson H decaying into the observed Higgs boson h with a mass of 125 GeV and another Higgs boson hS is presented. The h and hS bosons are required to decay into a pair of tau leptons and a pair of b quarks, respectively. The search uses a sample of proton-proton collisions collected with the CMS detector at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 137 fb−1. Mass ranges of 240–3000 GeV for mH and 60–2800 GeV for $$ {m}_{{\mathrm{h}}_{\mathrm{S}}} $$ m h S are explored in the search. No signal has been observed. Model independent 95% confidence level upper limits on the product of the production cross section and the branching fractions of the signal process are set with a sensitivity ranging from 125 fb (for mH = 240 GeV) to 2.7 fb (for mH = 1000 GeV). These limits are compared to maximally allowed products of the production cross section and the branching fractions of the signal process in the next-to-minimal supersymmetric extension of the standard model.


2015 ◽  
Vol 91 (7) ◽  
Author(s):  
Martin Flechl ◽  
Richard Klees ◽  
Michael Krämer ◽  
Michael Spira ◽  
Maria Ubiali

2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
F. Ramírez-Sánhez ◽  
A. Gutiérrez-Rodríguez ◽  
Alejandro González-Sánchez ◽  
M. A. Hernández-Ruíz

We study the production sensitivity of Higgs bosons h and H, in relation to the possible existence of Z′ boson and a top quark pair at the energy scales that will be reached in the near future at projected e+e- linear colliders. We focus on the resonance and no-resonance effects of the annihilation processes e+e-→(γ,Z,Z′)→tt-h and e+e-→(γ,Z,Z′)→tt-H. Furthermore, we develop and present novel analytical formulas to assess the total cross section involved in the production of Higgs bosons. We find that the possibility of performing precision measurements for the Higgs bosons h and H and for the Z′ boson is very promising at future e+e- linear colliders.


2016 ◽  
Vol 94 (11) ◽  
Author(s):  
J. Yan ◽  
S. Watanuki ◽  
K. Fujii ◽  
A. Ishikawa ◽  
D. Jeans ◽  
...  

2020 ◽  
Vol 80 (10) ◽  
Author(s):  
G. Aad ◽  
◽  
B. Abbott ◽  
D. C. Abbott ◽  
A. Abed Abud ◽  
...  

AbstractHiggs boson properties are studied in the four-lepton decay channel (where lepton = e, $$\mu $$ μ ) using 139 $$\hbox {fb}^{-1}$$ fb - 1 of proton–proton collision data recorded at $$\sqrt{s}=$$ s = 13 TeV by the ATLAS experiment at the Large Hadron Collider. The inclusive cross-section times branching ratio for $$H\rightarrow ZZ^*$$ H → Z Z ∗ decay is measured to be $$1.34 \pm 0.12$$ 1.34 ± 0.12  pb for a Higgs boson with absolute rapidity below 2.5, in good agreement with the Standard Model prediction of $$1.33 \pm 0.08$$ 1.33 ± 0.08  pb. Cross-sections times branching ratio are measured for the main Higgs boson production modes in several exclusive phase-space regions. The measurements are interpreted in terms of coupling modifiers and of the tensor structure of Higgs boson interactions using an effective field theory approach. Exclusion limits are set on the CP-even and CP-odd ‘beyond the Standard Model’ couplings of the Higgs boson to vector bosons, gluons and top quarks.


Author(s):  
Philipp Roloff ◽  
Ulrike Schnoor ◽  
Rosa Simoniello ◽  
Boruo Xu

AbstractThe Compact Linear Collider (CLIC) is a future electron–positron collider that will allow measurements of the trilinear Higgs self-coupling in double Higgs boson events produced at its high-energy stages with collision energies from $$\sqrt{s}$$ s  = 1.4 to 3 TeV. The sensitivity to the Higgs self-coupling is driven by the measurements of the cross section and the invariant mass distribution of the Higgs-boson pair in the W-boson fusion process, $$\text {e}^{+}\text {e}^{-}\rightarrow {\text {H}\text {H}\nu \bar{\nu }}$$ e + e - → HH ν ν ¯ . It is enhanced by including the cross-section measurement of ZHH production at 1.4 TeV. The expected sensitivity of CLIC for Higgs pair production through W-boson fusion is studied for the decay channels $$\mathrm{b}\bar{\mathrm{b}}\mathrm{b}\bar{\mathrm{b}}$$ b b ¯ b b ¯   and $$\mathrm{b}\bar{\mathrm{b}}\mathrm{W}\mathrm{W}^{*}$$ b b ¯ W W ∗   using full detector simulation including all relevant backgrounds at $$\sqrt{s}$$ s = 1.4 TeV with an integrated luminosity of $$\mathcal {L}$$ L  = 2.5 ab$$^{-1}$$ - 1 and at $$\sqrt{s}$$ s = 3 TeV with $$\mathcal {L}$$ L  = 5 ab$$^{-1}$$ - 1 . Combining $$\text {e}^{+}\text {e}^{-}\rightarrow {\text {H}\text {H}\nu \bar{\nu }}$$ e + e - → HH ν ν ¯ and ZHH  cross-section measurements at 1.4 TeV with differential measurements in $$\text {e}^{+}\text {e}^{-}\rightarrow {\text {H}\text {H}\nu \bar{\nu }}$$ e + e - → HH ν ν ¯ events at 3 TeV, CLIC will be able to measure the trilinear Higgs self-coupling with a relative uncertainty of $$-8\%$$ - 8 % and $$ +11\%$$ + 11 % at 68% C.L., assuming the Standard Model. In addition, prospects for simultaneous constraints on the trilinear Higgs self-coupling and the Higgs-gauge coupling HHWW are derived based on the $${\text {H}\text {H}\nu \bar{\nu }}$$ HH ν ν ¯ measurement.


Sign in / Sign up

Export Citation Format

Share Document