Weakly-Supervised Nucleus Segmentation Based on Point Annotations: A Coarse-to-Fine Self-Stimulated Learning Strategy

Author(s):  
Kuan Tian ◽  
Jun Zhang ◽  
Haocheng Shen ◽  
Kezhou Yan ◽  
Pei Dong ◽  
...  
Forests ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 768
Author(s):  
Jin Pan ◽  
Xiaoming Ou ◽  
Liang Xu

Forest fires are serious disasters that affect countries all over the world. With the progress of image processing, numerous image-based surveillance systems for fires have been installed in forests. The rapid and accurate detection and grading of fire smoke can provide useful information, which helps humans to quickly control and reduce forest losses. Currently, convolutional neural networks (CNN) have yielded excellent performance in image recognition. Previous studies mostly paid attention to CNN-based image classification for fire detection. However, the research of CNN-based region detection and grading of fire is extremely scarce due to a challenging task which locates and segments fire regions using image-level annotations instead of inaccessible pixel-level labels. This paper presents a novel collaborative region detection and grading framework for fire smoke using a weakly supervised fine segmentation and a lightweight Faster R-CNN. The multi-task framework can simultaneously implement the early-stage alarm, region detection, classification, and grading of fire smoke. To provide an accurate segmentation on image-level, we propose the weakly supervised fine segmentation method, which consists of a segmentation network and a decision network. We aggregate image-level information, instead of expensive pixel-level labels, from all training images into the segmentation network, which simultaneously locates and segments fire smoke regions. To train the segmentation network using only image-level annotations, we propose a two-stage weakly supervised learning strategy, in which a novel weakly supervised loss is proposed to roughly detect the region of fire smoke, and a new region-refining segmentation algorithm is further used to accurately identify this region. The decision network incorporating a residual spatial attention module is utilized to predict the category of forest fire smoke. To reduce the complexity of the Faster R-CNN, we first introduced a knowledge distillation technique to compress the structure of this model. To grade forest fire smoke, we used a 3-input/1-output fuzzy system to evaluate the severity level. We evaluated the proposed approach using a developed fire smoke dataset, which included five different scenes varying by the fire smoke level. The proposed method exhibited competitive performance compared to state-of-the-art methods.


2020 ◽  
Vol 34 (07) ◽  
pp. 12886-12893
Author(s):  
Xiao-Yu Zhang ◽  
Haichao Shi ◽  
Changsheng Li ◽  
Peng Li

Weakly supervised action recognition and localization for untrimmed videos is a challenging problem with extensive applications. The overwhelming irrelevant background contents in untrimmed videos severely hamper effective identification of actions of interest. In this paper, we propose a novel multi-instance multi-label modeling network based on spatio-temporal pre-trimming to recognize actions and locate corresponding frames in untrimmed videos. Motivated by the fact that person is the key factor in a human action, we spatially and temporally segment each untrimmed video into person-centric clips with pose estimation and tracking techniques. Given the bag-of-instances structure associated with video-level labels, action recognition is naturally formulated as a multi-instance multi-label learning problem. The network is optimized iteratively with selective coarse-to-fine pre-trimming based on instance-label activation. After convergence, temporal localization is further achieved with local-global temporal class activation map. Extensive experiments are conducted on two benchmark datasets, i.e. THUMOS14 and ActivityNet1.3, and experimental results clearly corroborate the efficacy of our method when compared with the state-of-the-arts.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256830
Author(s):  
Yeheng Sun ◽  
Yule Ji

Accurate segmentation of breast masses is an essential step in computer aided diagnosis of breast cancer. The scarcity of annotated training data greatly hinders the model’s generalization ability, especially for the deep learning based methods. However, high-quality image-level annotations are time-consuming and cumbersome in medical image analysis scenarios. In addition, a large amount of weak annotations is under-utilized which comprise common anatomy features. To this end, inspired by teacher-student networks, we propose an Anatomy-Aware Weakly-Supervised learning Network (AAWS-Net) for extracting useful information from mammograms with weak annotations for efficient and accurate breast mass segmentation. Specifically, we adopt a weakly-supervised learning strategy in the Teacher to extract anatomy structure from mammograms with weak annotations by reconstructing the original image. Besides, knowledge distillation is used to suggest morphological differences between benign and malignant masses. Moreover, the prior knowledge learned from the Teacher is introduced to the Student in an end-to-end way, which improves the ability of the student network to locate and segment masses. Experiments on CBIS-DDSM have shown that our method yields promising performance compared with state-of-the-art alternative models for breast mass segmentation in terms of segmentation accuracy and IoU.


Author(s):  
Robin Sandkühler ◽  
Christoph Jud ◽  
Grzegorz Bauman ◽  
Corin Willers ◽  
Orso Pusterla ◽  
...  

Author(s):  
Asmaa Abbas ◽  
Mohammed M. Abdelsamea ◽  
Mohamed Medhat Gaber

ABSTRACTDue to the high availability of large-scale annotated image datasets, knowledge transfer from pre-trained models showed outstanding performance in medical image classification. However, building a robust image classification model for datasets with data irregularity or imbalanced classes can be a very challenging task, especially in the medical imaging domain. In this paper, we propose a novel deep convolutional neural network, we called Self Supervised Super Sample Decomposition for Transfer learning (4S-DT) model. 4S-DT encourages a coarse-to-fine transfer learning from large-scale image recognition tasks to a specific chest X-ray image classification task using a generic self-supervised sample decomposition approach. Our main contribution is a novel self-supervised learning mechanism guided by a super sample decomposition of unlabelled chest X-ray images. 4S-DT helps in improving the robustness of knowledge transformation via a downstream learning strategy with a class-decomposition layer to simplify the local structure of the data. 4S-DT can deal with any irregularities in the image dataset by investigating its class boundaries using a downstream class-decomposition mechanism. We used 50,000 unlabelled chest X-ray images to achieve our coarse-to-fine transfer learning with an application to COVID-19 detection, as an exemplar. 4S-DT has achieved an accuracy of 97.54% in the detection of COVID-19 cases on an extended test set enriched by augmented images, out of which all real COVID-19 cases were detected, which was the highest accuracy obtained when compared to other methods.


Sign in / Sign up

Export Citation Format

Share Document