scholarly journals Pruning Artificial Neural Networks: A Way to Find Well-Generalizing, High-Entropy Sharp Minima

Author(s):  
Enzo Tartaglione ◽  
Andrea Bragagnolo ◽  
Marco Grangetto
Metals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1569
Author(s):  
Nicolae Filipoiu ◽  
George Alexandru Nemnes

High entropy alloys (HEAs) are still a largely unexplored class of materials with high potential for applications in various fields. Motivated by the huge number of compounds in a given HEA class, we develop machine learning techniques, in particular artificial neural networks, coupled to ab initio calculations, in order to accurately predict some basic HEA properties: equilibrium phase, cohesive energies, density of states at the Fermi level and the stress-strain relation, under conditions of isotropic deformations. Known for its high tensile ductility and fracture toughness, the Co-Cr-Fe-Ni-Al alloy has been considered as a test candidate material, particularly by adjusting the Al content. However, further enhancement of the microstructure, mechanical and thermal properties is possible by modifying also the fractions of the base alloy. Using deep neural networks, we map structural and chemical neighborhood information onto the quantities of interest. This approach offers the possibility for an efficient screening over a huge number of potential candidates, which is essential in the exploration of multi-dimensional compositional spaces.


Author(s):  
Kobiljon Kh. Zoidov ◽  
◽  
Svetlana V. Ponomareva ◽  
Daniel I. Serebryansky ◽  
◽  
...  

2012 ◽  
Vol 3 (2) ◽  
pp. 48-50
Author(s):  
Ana Isabel Velasco Fernández ◽  
◽  
Ricardo José Rejas Muslera ◽  
Juan Padilla Fernández-Vega ◽  
María Isabel Cepeda González

Sign in / Sign up

Export Citation Format

Share Document