Application of NDT for Installation of Rooftop Solar Power Plants

Author(s):  
Prafulla Parlewar
Author(s):  
Pratosh P Patankar ◽  
Mayuri M Munshi ◽  
Rohit R Deshmukh ◽  
Makarand S Ballal

Author(s):  
T. N. Nguyen ◽  
V. D. Sizov ◽  
M. P. Vu ◽  
T. T. H. Cu

Vietnam is a country of a great solar potential; solar technology is growing rapidly in Vietnam and investors are very interested in building solar power plants. Construction of the rooftop solar power stations can help owners reduce monthly electricity costs and even get economic benefits by selling excess electricity coming from a solar power plant (PV) to the utility grid. In this study, the design results of a rooftop grid-tied solar power station with the capacity of 26 kWp for a commercial building were introduced to have a basis to assess the operation ability of solar power station under solar radiation conditions in Hanoi city, Vietnam. The simulation results using the PVsyst program have made it possible to calculate the solar energy potential in Hanoi city, the power generation and efficiency of the grid-tied solar power station. Solar power has been applied in Vietnam since the 1990s but is mainly used for areas that were far from national power grid such as mountainous areas, islands. Small scale grid-tied solar power has been developed since 2010 and mainly is used for residential applications or small and medium scale consumers. The total capacity of electricity produced by solar power plants in Vietnam by 2017 was only about 8 MW; this value is very low as compared to the potential of solar power in Vietnam. This is due to the absence of the government support for the policy of developing solar power. In accordance with the current roadmap of raising electricity prices in Vietnam, construction investment of rooftop solar power stations is economically feasible while contributing to environmental protection and counteracting climate change phenomenon by reducing the amount of CO2 emitted into the environment.


2021 ◽  
Vol 1125 (1) ◽  
pp. 012074
Author(s):  
J Koko ◽  
A Riza ◽  
U K Mohamad Khadik

Author(s):  
Bashria A A Yousef ◽  
Ahmed A Hachicha ◽  
Ivette Rodriguez ◽  
Mohammad Ali Abdelkareem ◽  
Abrar Inyaat

Abstract Integration concept of energy resources can complement between the competing energy technologies. This manuscript presents a comprehensive review on the state-of-the-art of concentrated solar power (CSP) integration technology with various energy sources. Compared to CSP alone, integration of CSP and fossil fuel provides promising solution to solar energy intermittence, emissions and installation cost reduction, with 25% increase in electric power generation. On the other hand, integration of CSP with other sources such as geothermal and biomass can supply dispatchable power with almost zero emissions. The electricity produced via integrated CSP and photovoltaic (PV) has better power quality and less cost compared to that produced by PV alone or CSP alone, respectively. Integration of CSP and wind energy can meet peak demand, reduce power fluctuation and provide electrical power at a high capacity factor. However, the lack of reliable biomass, geothermal and wind data with the solar availability at specific locations is the main obstacle for the acceptance and further deployment of hybridization systems. The advantages and limitations of the hybrid technologies presented in this paper according to the literature are reviewed. Moreover, future directions of CSP such as production of hydrogen, solid particles receivers and the integration of supercritical carbon dioxide cycle are also discussed.


Sign in / Sign up

Export Citation Format

Share Document