Assessment on the Impact of Plastic-Contaminated Fertilizers on Agricultural Soil Health: A Case Study in Memari II C.D. Block, Purba Bardhaman, West Bengal, India

Author(s):  
Piyush Maji ◽  
Biswaranjan Mistri
2020 ◽  
Vol 42 (10) ◽  
pp. 3157-3170
Author(s):  
Kousik Kr. Mondal ◽  
Shuvam Banerjee ◽  
Shrinjana Dhar ◽  
M. Sudarshan ◽  
Pritha Bhattacharjee

SOIL ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 47-52
Author(s):  
Matthew A. Belanger ◽  
Carmella Vizza ◽  
G. Philip Robertson ◽  
Sarah S. Roley

Abstract. The active fraction of soil organic carbon is an important component of soil health and often is quickly assessed as the pulse of CO2 released by re-wetting dried soils in short-term (24–72 h) assays. However, soils can lose carbon (C) as they dry and, if soil samples vary in moisture content at sampling, differential C loss during the pre-assay dry-down period may complicate the assay's interpretations. We examined the impact of pre-assay CO2 loss in a long-cultivated agricultural soil at initial moisture contents of 30 %, 50 %, and 70 % water-filled pore space (WFPS). We found that 50 % and 70 % WFPS treatments lost more C during drying than did those in the 30 % WFPS treatment and that dry-down losses led to a 26 %–32 % underestimate of their CO2 pulses. We developed a soil-specific correction factor to account for these initial soil moisture effects. Future C mineralization studies may benefit from similar corrections.


2021 ◽  
Author(s):  
Rakesh S ◽  
Abhas K Sinha ◽  
Mahesh Kumar Gathala ◽  
Menzies ◽  
Sudarshan Dutta ◽  
...  

Abstract Purpose A conservation agriculture-based sustainable intensification (CASI) practices have been proposed as a potential alternative management strategy for achieving the food, water and energy security while sustaining the soil health and climate resilience. In this study, we evaluate the performance of CASI technologies under two cropping systems on carbon (C) dynamics in the soils of recent and old alluvial nature of West Bengal in Eastern Alluvial Ganga Plains. Methods The on-farm field study was undertaken for four years during 2014-15 to 2018-19 with an objective of long-term setup at Coochbehar and Malda districts, West Bengal (subtropical eastern India). The two cropping systems (rice-wheat, RW and rice-maize, RM) and two tillage options (zero tillage, ZT and conventional tillage, CT) were evaluated on multi-location at farmers’ field to see the impact on soil total organic carbon (TOC) and its fractions, stratification, and stocks. Results About 20% higher TOC concentration was observed in the old alluvial soils (Inceptisols of Malda district) as compared to recent alluvial soils (Entisols of Coochbehar district). TOC and its fractions significantly (p<0.05) improved under RM cropping system than that under RW. The ZT system enhanced the TOC and its fractions by 16.8 and 9.8 % over CT at 0–5 and 5–10 cm respectively. All the C fractions showed strong positive correlation (r= >0.85; p < 0.01) with TOC except POC. Conclusions Our research indicated that ZT system increased the C turnover rate in both soil types which was found more prominent in RM system.


2018 ◽  
Author(s):  
Ylber Limani ◽  
Edmond Hajrizi ◽  
Rina Sadriu

Sign in / Sign up

Export Citation Format

Share Document