Remote Sensing Techniques for Monitoring Fire Damage and Recovery of Mediterranean Pine Forests: Pinus pinaster and Pinus halepensis as Case Studies

2021 ◽  
pp. 585-599
Author(s):  
Alfonso Fernández-Manso ◽  
Carmen Quintano ◽  
Susana Suarez-Seoane ◽  
Elena Marcos ◽  
Leonor Calvo
2021 ◽  
Vol 13 (3) ◽  
pp. 366
Author(s):  
Renato Macciotta ◽  
Michael T. Hendry

Transportation infrastructure in mountainous terrain and through river valleys is exposed to a variety of landslide phenomena. This is particularly the case for highway and railway corridors in Western Canada that connect towns and industries through prairie valleys and the Canadian cordillera. The fluidity of these corridors is important for the economy of the country and the safety of workers, and users of this infrastructure is paramount. Stabilization of all active slopes is financially challenging given the extensive area where landslides are a possibility, and monitoring and minimization of slope failure consequences becomes an attractive risk management strategy. In this regard, remote sensing techniques provide a means for enhancing the monitoring toolbox of the geotechnical engineer. This includes an improved identification of active landslides in large areas, robust complement to in-place instrumentation for enhanced landslide investigation, and an improved definition of landslide extents and deformation mechanisms. This paper builds upon the extensive literature on the application of remote sensing techniques and discusses practical insights gained from a suite of case studies from the authors’ experience in Western Canada. The review of the case studies presents a variety of landslide mechanisms and remote sensing technologies. The aim of the paper is to transfer some of the insights gained through these case studies to the reader.


The Holocene ◽  
2011 ◽  
Vol 22 (5) ◽  
pp. 561-570 ◽  
Author(s):  
César Morales-Molino ◽  
José M Postigo-Mijarra ◽  
Carlos Morla ◽  
Mercedes García-Antón

2021 ◽  
Author(s):  
Irene Ruano ◽  
Celia Herrero ◽  
Felipe Bravo

Abstract BackgroundForest resilience should be improved to promote species adaptation and ensure the future of forests. Carbon stock is considered an indicator of resilience, so it is necessary to determine forest carbon stocks and how to improve them through forest management. The main objective of this study was to analyse biomass production and distribution among the components of four-year-old Pinus pinaster and Pinus halepensis trees. Young trees from a Nelder wheel experimental site were harvested and analysed. The effect of density could be included in the biomass analysis thanks to the Nelder wheel design. We tested densities from 1000 to 80000 seedlings/ha and analysed biomass by fitting different equations: (i) linear regressions to analyse biomass production; (ii) Dirichlet regressions to estimate the biomass proportions of each component and (iii) allometric equations to predict the biomass content of each component.ResultsResults from this innovative approach showed that density was a significant factor for Pinus halepensis. We observed a general increase of total biomass at lower densities and this positive effect increased root biomass proportion at the expense of aboveground biomass. Also, a new set of equations was developed for estimating above- and below-ground biomass in young Pinus pinaster and Pinus halepensis trees.Conclusionswe note the importance of belowground biomass and its value in total biomass production (approximately 20% of total biomass for both species). The effect of density on biomass production was only significant for Pinus halepensis, but the effect of density would have been different if root biomass had not been considered in the present study. Lower densities increased root biomass proportion at the expense of aboveground biomass. Currently, this positive effect is especially important in promoting management to improve tree resilience.


Sign in / Sign up

Export Citation Format

Share Document