Liquefaction as Microstructural Instability and Validations: The Disturbed State Concept

Author(s):  
Chandrakant S. Desai ◽  
Mohamad Essa Alyounis
2021 ◽  
pp. 102025
Author(s):  
Michaela Roudnická ◽  
Orsolya Molnárová ◽  
Jan Drahokoupil ◽  
Jiří Kubásek ◽  
Jiří Bigas ◽  
...  

1997 ◽  
Vol 119 (4) ◽  
pp. 294-300 ◽  
Author(s):  
C. S. Desai ◽  
J. Chia ◽  
T. Kundu ◽  
J. L. Prince

The disturbed state concept (DSC) presented here provides a unified and versatile methodology for constitutive modeling of thermomechanical response of materials and interfaces/joints in electronic chip-substrate systems. It allows for inclusion of such important features as elastic, plastic and creep strains, microcracking and degradation, strengthening, and fatigue failure. It provides the flexibility to adopt different hierarchical versions in the range of simple (e.g., elastic) to sophisticated (thermoviscoplastic with microcracking and damage), depending on the user’s specific need. This paper presents the basic theory and procedures for finding parameters in the model based on laboratory test data and their values for typical solder materials. Validation of the models with respect to laboratory test behavior and different criteria for the identification of cyclic fatigue and failure, including a new criterion based on the DSC and design applications, are presented in the compendium paper (Part II, Desai et al., 1997). Based on these results, the DSC shows excellent potential for unified characterization of the stress-strain-strength and failure behavior of engineering materials in electronic packaging problems.


2020 ◽  
Vol 51 (5) ◽  
pp. 2495-2508
Author(s):  
Zhongding Fan ◽  
Xinguang Wang ◽  
Yanhong Yang ◽  
Hao Chen ◽  
Zhigang Yang ◽  
...  

2014 ◽  
Vol 919-921 ◽  
pp. 1345-1349
Author(s):  
Wei Lu ◽  
Jia Jun Pan

The method of postulate of relatively intact model in the disturbed concept model is reached. Because it is more difficult to assume relatively intact curve by observed experimental data, a method which could automatically calculate the stress strain relation curve of relative intact by triaxial compression test data is raised, so that the determination of material parameters becomes easier, and the improved method is verified by numerical calculation. The results show that this method can effectively determine the stress strain relation curve of relative intact.


2015 ◽  
Vol 15 (6) ◽  
pp. 04015002 ◽  
Author(s):  
Rasika Athukorala ◽  
Buddhima Indraratna ◽  
Jayan S. Vinod

Author(s):  
Mark D. Nickerson ◽  
Chandrakant S. Desai

Thermomechanical, power temperature cycling (PTC) and vibration analyses were performed on a 313 staggered pin PBGA package using plastic and viscoplastic disturbed-state damage models. An accelerated finite element failure analysis was performed using a newly developed procedure. Validations were performed using published PBGA test data. The disturbed state concept was used to model the disturbance (damage) accumulated in PBGA solder joints subjected to thermal cycling (PTC and TCT), vibration, and vibration coupled with three distinct temperatures. 2D FEA plastic and viscoplastic models were created based on a diagonal “slice” of the PBGA. This allowed the most critical solder balls (under the die and furthest DNP) to be analyzed in the same model. The thermal cycling results indicate that the solder balls under the die are the most likely to fail. The vibration results indicate the solder balls furthest from the package center are most likely to fail. The vibration results, coupled with distinct isothermal temperatures, indicate that as temperature increases, the cycles to failure decreases.


Author(s):  
Russell D. Whitenack ◽  
Chandra S. Desai

The disturbed state concept (DSC) presented herein represents a unified and powerful approach for constitutive modeling of materials and interfaces in electronic packaging. Together with the computer finite element procedure it provides an analysis tool for calculation of stresses, strains, disturbance and cycles to failure. The accelerated procedure allows economical approximation of cycles to failure and distribution of disturbance at different cycles for design and reliability.


Sign in / Sign up

Export Citation Format

Share Document