Effects of Basicity, FeO, and TiO2 on Phase Transformation and Viscosity of TiO2-Bearing Primary Slag in Blast Furnace

Author(s):  
Yapeng Zhang ◽  
Dongqing Wang ◽  
Shaoguo Chen ◽  
Zhengjian Liu ◽  
Wen Pan ◽  
...  
2021 ◽  
Vol 7 (3) ◽  
pp. 32
Author(s):  
Noorina Hidayu Jamil ◽  
Mohd. Mustafa Al Bakri Abdullah ◽  
Faizul Che Pa ◽  
Mohamad Hasmaliza ◽  
Wan Mohd Arif W. Ibrahim ◽  
...  

The main objective of this research was to investigate the influence of curing temperature on the phase transformation, mechanical properties, and microstructure of the as-cured and sintered kaolin-ground granulated blast furnace slag (GGBS) geopolymer. The curing temperature was varied, giving four different conditions; namely: Room temperature, 40, 60, and 80 °C. The kaolin-GGBS geopolymer was prepared, with a mixture of NaOH (8 M) and sodium silicate. The samples were cured for 14 days and sintered afterwards using the same sintering profile for all of the samples. The sintered kaolin-GGBS geopolymer that underwent the curing process at the temperature of 60 °C featured the highest strength value: 8.90 MPa, and a densified microstructure, compared with the other samples. The contribution of the Na2O in the geopolymerization process was as a self-fluxing agent for the production of the geopolymer ceramic at low temperatures.


2018 ◽  
Vol 58 (10) ◽  
pp. 1775-1780 ◽  
Author(s):  
Xiaoyue Fan ◽  
Kexin Jiao ◽  
Jianliang Zhang ◽  
Kaidi Wang ◽  
Zhiyu Chang

Metals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 550
Author(s):  
Yunye Cao ◽  
Chengyan Xu ◽  
Yuechao Tian ◽  
Yanqing Hou

Nickel slag and blast furnace dust comprise a large part of solid waste produced by the metallurgical industry. In this study, a novel method of co-reduction roasting followed by grinding/magnetic separation was proposed to collaboratively reutilize nickel slag and blast furnace dust. The nickel slag was combined with blast furnace dust to produce a Ni-Fe alloy containing Cu component by using the proposed method. In addition, the blast furnace dust acted not only as a reductant but also as an Fe resource. Results in this work showed that 81.62% Fe and 89% Ni could be recovered from nickel slag and blast furnace dust, and a Ni-Fe alloy product with 93.03 wt% Fe, 0.86 wt% Ni, and 0.49 wt% Cu could be obtained under optimal conditions in this study. The effect of roasting temperature on phase transformation was characterized and analyzed by XRD and SEM-EDS. The results illustrated that roasting temperature was considered as the main influence to regulate the mineral phase transformation and microstructural change in roasted product. The minerals in the nickel slag finally transformed iron and augite from fayalite containing magnesium and magnetite after the disappearance/transformation of the mineral phase. The Fe-bearing minerals were first reduced in situ position of structure into metallic Fe particles and then grown into a Ni-Fe alloy with Cu of chain structure. The new structure, instead of the original structure, formed the homogeneous slag phase and Ni-Fe alloy with Cu component.


2013 ◽  
Vol 641-642 ◽  
pp. 363-366 ◽  
Author(s):  
Wu Zhang ◽  
Li Zhang ◽  
Nai Xiang Feng

Abstract. Effect of oxidation on phase transformation in Ti-bearing blast furnace slag is studied. The slag is analyzed by X-ray diffraction (XRD) and scanning electron microscope (SEM), EDX and metallographic microscope. The experiment results indelicate that the phase composition of the oxidized slag is simpler which are only rutile and glass phase. The titanaugite, Ti-rich diopside and perovskite phase are vanished and most of the Ti components were enriched in the rutile phase.


2020 ◽  
Vol 9 (6) ◽  
pp. 14922-14932
Author(s):  
Noorina Hidayu Jamil ◽  
Mohd. Mustafa Al Bakri Abdullah ◽  
Faizul Che Pa ◽  
Hasmaliza Mohamad ◽  
Wan Mohd Arif W. Ibrahim ◽  
...  

2016 ◽  
Vol 47 (2) ◽  
pp. 1390-1399 ◽  
Author(s):  
Zhongmin Li ◽  
Jinfu Li ◽  
Yongqi Sun ◽  
Seshadri Seetharaman ◽  
Lili Liu ◽  
...  

Author(s):  
Shiro Fujishiro

The Ti-6 wt.% Al-4 wt.% V commercial alloys have exhibited an improved formability at cryogenic temperature when the alloys were heat-treated prior to the tests. The author was interested in further investigating this unusual ductile behavior which may be associated with the strain-induced transformation or twinning of the a phase, enhanced at lower temperatures. The starting materials, supplied by RMI Co., Niles, Ohio were rolled mill products in the form of 40 mil sheets. The microstructure of the as-received materials contained mainly ellipsoidal α grains measuring between 1 and 5μ. The β phase formed an undefined grain boundary around the a grains. The specimens were homogenized at 1050°C for one hour, followed by aging at 500°C for two hours, and then quenched in water to produce the α/β mixed microstructure.


Author(s):  
J. Cooper ◽  
O. Popoola ◽  
W. M. Kriven

Nickel sulfide inclusions have been implicated in the spontaneous fracture of large windows of tempered plate glass. Two alternative explanations for the fracture-initiating behaviour of these inclusions have been proposed: (1) the volume increase which accompanies the α to β phase transformation in stoichiometric NiS, and (2) the thermal expansion mismatch between the nickel sulfide phases and the glass matrix. The microstructure and microchemistry of the small inclusions (80 to 250 μm spheres), needed to determine the cause of fracture, have not been well characterized hitherto. The aim of this communication is to report a detailed TEM and EDS study of the inclusions.


Sign in / Sign up

Export Citation Format

Share Document