Nature of Uranous Ore Formation in Hypergenesis Region

Author(s):  
Olga Alexandrovna Doynikova
Keyword(s):  
2018 ◽  
Vol 481 (3) ◽  
pp. 281-284
Author(s):  
E. Kolova ◽  
◽  
H. Savva ◽  
A. Sidorov ◽  
A. Volkov ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yanlu Xing ◽  
Joël Brugger ◽  
Barbara Etschmann ◽  
Andrew G. Tomkins ◽  
Andrew J. Frierdich ◽  
...  

AbstractReaction-induced porosity is a key factor enabling protracted fluid-rock interactions in the Earth’s crust, promoting large-scale mineralogical changes during diagenesis, metamorphism, and ore formation. Here, we show experimentally that the presence of trace amounts of dissolved cerium increases the porosity of hematite (Fe2O3) formed via fluid-induced, redox-independent replacement of magnetite (Fe3O4), thereby increasing the efficiency of coupled magnetite replacement, fluid flow, and element mass transfer. Cerium acts as a catalyst affecting the nucleation and growth of hematite by modifying the Fe2+(aq)/Fe3+(aq) ratio at the reaction interface. Our results demonstrate that trace elements can enhance fluid-mediated mineral replacement reactions, ultimately controlling the kinetics, texture, and composition of fluid-mineral systems. Applied to some of the world’s most valuable orebodies, these results provide new insights into how early formation of extensive magnetite alteration may have preconditioned these ore systems for later enhanced metal accumulation, contributing to their sizes and metal endowment.


Minerals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 354
Author(s):  
Anatoly M. Sazonov ◽  
Aleksei E. Romanovsky ◽  
Igor F. Gertner ◽  
Elena A. Zvyagina ◽  
Tatyana S. Krasnova ◽  
...  

The gold and platinum-group elements (PGE) mineralization of the Guli and Kresty intrusions was formed in the process of polyphase magmatism of the central type during the Permian and Triassic age. It is suggested that native osmium and iridium crystal nuclei were formed in the mantle at earlier high-temperature events of magma generation of the mantle substratum in the interval of 765–545 Ma and were brought by meimechite melts to the area of development of magmatic bodies. The pulsating magmatism of the later phases assisted in particle enlargement. Native gold was crystallized at a temperature of 415–200 °C at the hydrothermal-metasomatic stages of the meimechite, melilite, foidolite and carbonatite magmatism. The association of minerals of precious metals with oily, resinous and asphaltene bitumen testifies to the genetic relation of the mineralization to carbonaceous metasomatism. Identifying the carbonaceous gold and platinoid ore formation associated genetically with the parental formation of ultramafic, alkaline rocks and carbonatites is suggested.


Sign in / Sign up

Export Citation Format

Share Document