mineral replacement
Recently Published Documents


TOTAL DOCUMENTS

47
(FIVE YEARS 16)

H-INDEX

13
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Ane K. Engvik ◽  
Claudia A. Trepmann ◽  
Håkon Austrheim

<p>The Proterozoic gneisses of the Bamble lithotectonic domain (south Norway) underwent intense scapolitisation caused by K- and Mg-rich fluids and extensive albitisation with formation of numerous ore deposits.</p><p>By detailed studies of mineral reaction fabrics we document release of the chemical active Mg, K and Fe-components forming the metasomatic fluid: Breakdown of biotite to muscovite releases K, Mg, Fe, Si and H<sub>2</sub>O. As reaction products tiny Fe-oxide needles are present in the transforming rock. H<sub>2</sub>O is reacting with K-feldspar to produce additional amounts of white mica and quartz. During a subsequent reaction muscovite is replaced to sillimanite again releasing quartz and a K-rich fluid. The reactions form the peculiar sillimanite-nodular quartzite, but also well-foliated sillimanite-mica gneiss.</p><p>Optical and EBSD microfabric studies reveal a shape preferred orientation for quartz, but despite of a pronounced foliation, quartz does not show a crystallographic preferred orientation. A crystallographic preferred orientation is present for mica and sillimanite. Coarse micas show sutured boundaries to quartz, implying low nucleation rates, no crystallographic or surface-energy control during growth and no obvious crystallographic relationship to quartz.</p><p>Our study illustrates the transformation of a quartzofeldspatic lithology into sillimanite-bearing quartzite. The mineral replacement and deformation show ongoing metamorphic reactions during deformation. The microfabric data indicates reaction at non-isostatic stress condition. The deduced mineral replacement reactions document a source of K-, Mg- and Fe-rich metasomatic fluids necessary to cause the pervasive scapolitisation and Fe-deposition in the area. The mineral reactions and deformation produce rocks with a new mineralogy and structure; an increased understanding of these processes is important for the modelling of crustal building and geological history.</p>


2021 ◽  
Author(s):  
Adrienn Maria Szucs ◽  
Alexandra Stavropoulou ◽  
Claire O'Donnell ◽  
Seana Davis ◽  
Juan Diego Rodriguez-Blanco

<div> <p>The interaction of rare earth bearing (La, Nd, Dy) aqueous solutions with calcite crystals at was studied at ambient and hydrothermal conditions (25-220 °C) and resulted in the solvent-mediated surface precipitation and subsequent pseudomorphic mineral replacement of calcite by rare earth carbonates. Calcite grains were replaced from their periphery inwards, and the newly formed REE-bearing carbonates follow the crystallisation sequence lanthanite [REE<sub>2</sub>(CO<sub>3</sub>)<sub>3</sub>·8H<sub>2</sub>O] → kozoite [orthorhombic REECO<sub>3</sub>(OH)] → hydroxylbastnasite [hexagonal REECO<sub>3</sub>(OH)]. The specific rare earth involved in these processes and the temperature have a significant role in the polymorph selection, crystallisation pathways and kinetics of mineral replacement. La- and Nd-bearing kozoite, grows oriented onto the calcite surface, forming an epitaxy, due to their structural similarities. This phase forms elongated crystals on [100], with the {011} and {0-11} as major forms. The epitaxial relationship is (104) [010]<sub>cc </sub>║(001) [100]<sub>koz</sub> and is strongly dependent on the ionic radius of the rare earth in the structure of kozoite. These results have strong implications for the understanding of mineralisation reactions occurring in REE-bearing carbonatite deposits, the most important resources of rare earths in the world.</p> </div>


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yanlu Xing ◽  
Joël Brugger ◽  
Barbara Etschmann ◽  
Andrew G. Tomkins ◽  
Andrew J. Frierdich ◽  
...  

AbstractReaction-induced porosity is a key factor enabling protracted fluid-rock interactions in the Earth’s crust, promoting large-scale mineralogical changes during diagenesis, metamorphism, and ore formation. Here, we show experimentally that the presence of trace amounts of dissolved cerium increases the porosity of hematite (Fe2O3) formed via fluid-induced, redox-independent replacement of magnetite (Fe3O4), thereby increasing the efficiency of coupled magnetite replacement, fluid flow, and element mass transfer. Cerium acts as a catalyst affecting the nucleation and growth of hematite by modifying the Fe2+(aq)/Fe3+(aq) ratio at the reaction interface. Our results demonstrate that trace elements can enhance fluid-mediated mineral replacement reactions, ultimately controlling the kinetics, texture, and composition of fluid-mineral systems. Applied to some of the world’s most valuable orebodies, these results provide new insights into how early formation of extensive magnetite alteration may have preconditioned these ore systems for later enhanced metal accumulation, contributing to their sizes and metal endowment.


2021 ◽  
Vol 91 (1) ◽  
pp. 146-166
Author(s):  
Brooks H. Ryan ◽  
Stephen E. Kaczmarek ◽  
John M. Rivers

ABSTRACT The lower Eocene Rus Formation in Qatar reflects carbonate deposition in a semirestricted to fully restricted marine setting on a shallow ramp. Petrographic, mineralogical, and geochemical evidence from three research cores show early diagenesis has extensively altered nearly every petrological attribute of these rocks despite not having been deeply buried. In southern Qatar, the lower Rus (Traina Mbr.) consists of fabric-retentive dolomite intervals that preserve mudstone, wackestone, and packstone textures that are interbedded with depositional gypsum beds. In northern Qatar, the same member is dominated by fabric-destructive planar-e dolomite, and evaporites are absent. In both northern and southern Qatar, the upper Rus (Al Khor Mbr.) is composed of fabric-retentive dolomite intervals as well as limestone intervals rich with Microcodium textures that display evidence of dedolomitization. Geochemical analysis reveals that the limestones have an average δ18Ocal of –10.73‰ VPDB and δ13Ccal of –7.84‰ VPDB, whereas average dolomite δ18Odol is significantly higher (–1.06‰ VPDB) but δ13Cdol values (–3.04‰ VPDB; range –10 to 0‰) overlap with δ13Ccal values. Additionally, δ13Cdol trends toward normal marine values with depth away from the calcite–dolomite contact in all three cores. Petrographic observations demonstrate that dolomite crystals are commonly included in calcite and partially to completely replaced by calcite in these intervals and suggests that dolomite formed before calcite in the Microcodium-bearing intervals. Furthermore, the dolomites are commonly cemented by gypsum in the Traina Mbr. in southern Qatar, suggesting that dolomitization may have also occurred before, or concurrent with, bedded gypsum formation and indicates that dolomitization occurred early. Early dolomites were subsequently replaced by Microcodium-bearing limestones at and immediately below paleo-exposure surfaces, and at greater depths recrystallized in mixed marine–meteoric fluids, producing a negative δ13Cdol signature that trends toward more positive values away from the limestone–dolomite contact. Lastly, the dolomites underwent another phase of recrystallization in either marine-dominated fluids or possibly a well-mixed aquifer setting, resulting in a near-0‰ δ18Odol signature but retaining the negative δ13C signature. These findings thus have implications for reconstructing the diagenetic history of carbonate rocks, as they suggest that early diagenesis of carbonates can be extremely complex, resulting in multiple stages of mineral replacement and isotopic exchange in meteoric and shallow marine fluids before significant burial. Furthermore, this study shows that dolomitization of a limestone does not necessarily prevent additional early diagenesis and multiple recrystallization events. Lastly, it emphasizes the importance of incorporating petrographic observations with geochemical data when interpreting the diagenetic history of carbonate rocks.


2020 ◽  
Author(s):  
Laura Airaghi ◽  
Benoit Dubacq ◽  
Gloter Alexandre ◽  
Verlaguet Anne ◽  
Bellahsen Nicolas

<p>Strain localisation in the upper crust is strongly influenced by the presence of phyllosilicates (e.g. white mica, biotite, chlorite), systematically observed in shear zones in granites. Identifying reactions involving phyllosilicates at low-grade metamorphic conditions is crucial to understand crust mechanics and fluid-granite interactions during deformation. In the 305 Ma old basement of the Bielsa massif (Axial Zone, Pyrenees), extensive pre-orogenic (i.e. pre-Alpine) alteration related to feldspar sericitization and chloritization of biotite and amphibole occurred at temperatures of 270–350°C at 230–300 Ma. This event was followed by mylonitization and fracturing at 40–70 Ma, and fluid–rock interaction at 200–280°C marked by replacement and new crystallization of chlorite and white mica. In undeformed parts of the granite, compositional maps reveal in situ reaction, high local heterogeneities and low element mobility (migration over few µm) for most elements. Transmission electron microscopy (TEM) shows disconnected reaction-induced nanoporosity in chloritized amphiboles and ripplocations in chloritized biotite. Chloritization reaction varies over tens of nanometres, indicating high variability of element availability. Equilibrium is reached locally due to isolation of fluid in pockets. In samples with fractures, both elemental maps and TEM images show two chlorite groups: alpine chlorites in fractures have homogeneous composition while pre-alpine chlorites in the matrix show patchy compositions. Channelization of fluids in fractures and sealing by chlorite prevented replacement of the matrix chlorite. High element mobility was therefore limited to fractures. In mylonites, compositional maps show secondary chlorites up to 1 mm around cracks and only partial replacement of chlorite within the matrix. This suggests fluids could percolate from cracks to the matrix along chlorite grain boundaries. TEM images show nanocracks at the boundary of chlorite crystallites where replacement is localised. Crystallites were individually replaced by dissolution-reprecipitation reactions and not by intra-crystallite mineral replacement, explaining the patchy compositional variations. While fracturing did not allow chlorite sheets to be progressively re-oriented, a continuous, brittle-ductile deformation in mylonites did, making preferential fluid pathways progressively change.  Despite high strain, chlorite replacement was not complete even in mylonites. Replacement appears to be controlled by matrix-fracture porosity contrasts and the location and connection of nanoporosity between crystallites, criteria that may be only transiently met in space during deformation. These mechanisms need to be taken into account when attempting to reconstruct the metamorphic history of shear zones as well as the evolution of their mechanical behaviour since they affect the scale of the thermodynamic equilibrium and the preservation of hydrothermal metamorphism in granites.</p>


2020 ◽  
Author(s):  
Robert G. W. Seidel ◽  
John C. Bridges ◽  
Thomas Kirnbauer ◽  
Sarah C. Sherlock ◽  
Susanne P. Schwenzer

<p>We present results of an ongoing petrologic and modelling study of a new Martian analogue rock: The Frankenstein Gabbro (Odenwald, Germany). Our aim is to predict mineral reaction paths and fluid properties during hydrothermal alteration of basaltic host rocks on Mars – thought to be a common by-product of impact cratering – in order to assess the habitability of the fluids for the potential of Martian life, and establish a link between habitable fluid conditions and secondary mineral assemblages.</p><p>Primary minerals of the analogue are mostly plagioclase (~70 vol.%) and clinopyroxene (~20 vol.%) with lesser percentages of amphiboles and Fe-oxides. We focus on a chloritic-propylitic alteration event associated with hairline fault planes and mineral veinlets. The secondary mineralisation shows strong small-scale variability, depending on host mineral and type of fluid pathway: For plagioclase hosts, fault planes are dominated by chlorite with additional epidote and prehnite, while mineral veinlets consist of albite ± calcite ± chlorite ± epidote ± K-feldspar ± mica. For clinopyroxene hosts, fault planes consist of actinolite with additional chlorite or vermiculite, while mineral veinlets consist of prehnite and vermiculite.</p><p>We use the software CHIM-XPT to model mineral reaction paths, with published XRF bulk rock data, EMP analyses of single minerals, and a starting fluid enriched in Na, K, Mg and Si for input, the latter based on calculated element budgets of mineral replacement reactions. Our models reproduce secondary assemblages related to plagioclase-hosted fault planes (chlorite–epidote–prehnite) and veinlets (albite–chlorite–epidote–K-feldspar–mica), as well as alteration rims around clinopyroxene related to fault planes (actinolite–chlorite). Corresponding fluid conditions are ~200–250 °C, pH ~6.5–8.0, at water/rock ratios >3000, in agreement with pre-model constraints by mineralogy. The breakdown of clinopyroxene and plagioclase releases large amounts of Ca, with calcite inferred to be a late-stage product of cooling. Fluid redox state is shown to be largely controlled by host minerals, and in turn exerts strong influence on secondary mineral formation: clinopyroxene releases Fe<sup>2+</sup> during alteration, which is taken up by chlorite; in contrast, plagioclase contains up to 0.5 wt.% Fe<sup>3+</sup> substituting for Al, which is taken up by epidote. Prehnite, of the same elemental composition except for Fe, is inversely correlated with epidote. Thus, the relative percentages of chlorite, epidote and prehnite can serve as indicators of redox state in similar types of rock.</p><p>Our models match key petrological observations and provide information about the alteration process beyond what may be directly observed. They illustrate the need to account for small-scale variability, and to adjust models on a case-by-case basis. This has important implications for models of Martian habitability, where similar features may be expected. Next, we will apply these reaction pathways to Martian rocks (shergottitic basalts), focusing especially on small-scale distribution of dissolved iron species, a suggested energy source for hypothetical microbial Martian life.</p>


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8660 ◽  
Author(s):  
Carla J. Harper ◽  
Edith L. Taylor ◽  
Michael Krings

Permineralized peat from the central Transantarctic Mountains of Antarctica has provided a wealth of information on plant and fungal diversity in Middle Triassic high-latitude forest paleoecosystems; however, there are no reports as yet of algae or cyanobacteria. The first record of a fossil filamentous cyanobacterium in this peat consists of wide, uniseriate trichomes composed of discoid cells up to 25 µm wide, and enveloped in a distinct sheath. Filament morphology, structurally preserved by permineralization and mineral replacement, corresponds to the fossil genus Palaeo-lyngbya, a predominantly Precambrian equivalent of the extant Lyngbya sensu lato (Oscillatoriaceae, Oscillatoriales). Specimens occur exclusively in masses of interwoven hyphae produced by the fungus Endochaetophora antarctica, suggesting that a special micro-environmental setting was required to preserve the filaments. Whether some form of symbiotic relationship existed between the fungus and cyanobacterium remains unknown.


Sign in / Sign up

Export Citation Format

Share Document