Determination of Reactant Gases Mass Balance in the Process of Deposition of Ionic-Plasma Coatings

Author(s):  
Katerina Diadiun
Keyword(s):  
SPE Journal ◽  
2019 ◽  
Vol 24 (06) ◽  
pp. 2504-2525 ◽  
Author(s):  
Jing Li ◽  
Keliu Wu ◽  
Zhangxin Chen ◽  
Kun Wang ◽  
Jia Luo ◽  
...  

Summary An excess adsorption amount obtained in experiments is always determined by mass balance with a void volume measured by helium (He) –expansion tests. However, He, with a small kinetic diameter, can penetrate into narrow pores in porous media that are inaccessible to adsorbate gases [e.g., methane (CH4)]. Thus, the actual accessible volume for a specific adsorbate is always overestimated by an He–based void volume; such overestimation directly leads to errors in the determination of excess isotherms in the laboratory, such as “negative isotherms” for gas adsorption at high pressures, which further affects an accurate description of total gas in place (GIP) for shale–gas reservoirs. In this work, the mass balance for determining the adsorbed amount is rewritten, and two particular concepts, an “apparent excess adsorption” and an “actual excess adsorption,” are considered. Apparent adsorption is directly determined by an He–based volume, corresponding to the traditional treatment in experimental conditions, whereas actual adsorption is determined by an adsorbate–accessible volume, where pore–wall potential is always nonpositive (i.e., an attractive molecule/pore–wall interaction). Results show the following: The apparent excess isotherm determined by the He–based volume gradually becomes negative at high pressures, but the actual one determined by the adsorbate–accessible volume always remains positive.The negative adsorption phenomenon in the apparent excess isotherm is a result of the overestimation in the adsorbate–accessible volume, and a larger overestimation leads to an earlier appearance of this negative adsorption.The positive amount in the actual excess isotherm indicates that the adsorbed phase is always denser than the bulk gas because of the molecule/pore–wall attraction aiding the compression of the adsorbed molecules. Practically, an overestimation in pore volume (PV) is only 3.74% for our studied sample, but it leads to an underestimation reaching up to 22.1% in the actual excess amount at geologic conditions (i.e., approximately 47 MPa and approximately 384 K). Such an overestimation in PV also underestimates the proportions of the adsorbed–gas amount to the free–gas amount and to the total GIP. Therefore, our present work underlines the importance of a void volume in the determination of adsorption isotherms; moreover, we establish a path for a more–accurate evaluation of gas storage in geologic shale reservoirs with high pressure.


Author(s):  
Anna Kärrman ◽  
Leo Yeung ◽  
Kyra M Spaan ◽  
Frank Thomas Lange ◽  
Minh Anh Nguyen ◽  
...  

The high proportion of unidentified extractable organofluorine (EOF) observed globally in humans and the environment indicates widespread occurrence of unknown per- and polyfluoroalkyl substances (PFAS). However, efforts to standardize or...


Author(s):  
K. V. Diadiun

Providing an increase in the working capacity of a metal-cutting tool, it is possible to significantly increase the productivity of mechanized labor, thereby reducing the cost of purchasing a new tool and saving on other accompanying technological components. During the operation of the cutting tool, the main load is transferred to its working part, this, as a rule, leads to partial wear or complete destruction of the planes and cutting edges. There are a number of technologies for processing working surfaces, which provides them with additional strengthening, the most effective of which is the method of applying special coatings to the surface of the cutting tool. Taking into account the specifics of the processes of formation of coatings, they can be divided into three main groups [1]. The first group includes methods in which the formation of coatings is carried out mainly due to diffusion reactions between saturating elements and structures of the instrumental material. The second group includes methods of forming coatings by a complex mechanism. The third group includes methods of forming coatings due to chemical and plasma-chemical reactions of particle flux simultaneously in volumes of space immediately adjacent to the saturable surfaces of the instrumental base. One such technology is the CIB (condensation and ion bombardment) method, which is a physical deposition of coatings. The most characteristic feature of coatings produced by this method is the absence of a transition zone between the coating and the tool material. This makes it possible to obtain a complex of properties on the working surfaces of the tool without deteriorating its original properties. The article is devoted to the issues of increasing the efficiency of ion-plasma technologies through the development and implementation of an automated system for analyzing and controlling the mass balance of reagent gases under conditions of several gases supply. Thus, the improvement of the technology of coating the working surfaces of the cutting tool, namely, the effective control of the process of applying ion-plasma coatings with the introduction of an automated system for analyzing and controlling the mass balance of reagent gases under conditions of supplying several gases is an urgent task.


1990 ◽  
Vol 14 ◽  
pp. 238-241 ◽  
Author(s):  
M.S. Pelto ◽  
S.M. Higgins ◽  
T.J. Hughes ◽  
J.L. Fastook

Identification of present-day climate setting and alpine glacier-balance gradients indicates that the balance gradient of alpine glaciers is primarily determined by climatic conditions. Determination of balance gradients for specific climatic settings on present-day ice sheets provides an analog for determining the mass balance on paleo and future ice sheets.


2018 ◽  
Vol 17 (2) ◽  
pp. 227-236
Author(s):  
Alvyn P. Berg ◽  
Ting-An Fang ◽  
Hao L. Tang

Abstract Trial-and-error chlorination as a conventional practice for swimming pool water disinfection may fail to consistently maintain the pool's residual chlorine within regulatory limits. This study explored the variability of residual chlorine and other common water quality parameters of two sample swimming pools and examined the potential of using a mass balance model for proactive determination of chlorine consumption to better secure the hygienic safety of bathers. A lightly loaded Pool 1 with a normalized bather load of 0.038 bather/m3/day and a heavily loaded Pool 2 with a normalized bather load of 0.36 bather/m3/day showed great variances in residual free and combined chlorine control by trial-and-error methods due to dynamic pool uses. A mass balance model based on chemical and physical chlorine consumption mechanisms was found to be statistically valid using field data obtained from Pool 1. The chlorine consumption per capita coefficient was determined to be 4120 mg/bather. The predictive method based on chlorine demand has a potential to be used as a complementary approach to the existing trial-and-error chlorination practices for swimming pool water disinfection. The research is useful for pool maintenance to proactively determine the required chlorine dosage for compliance of pool regulations.


Sign in / Sign up

Export Citation Format

Share Document