Design and Testing of a Novel Magneto-Rheological Clutch with Tooth-Shaped Rotor

Author(s):  
Diep Bao Tri ◽  
Nguyen Ngoc Diep ◽  
Nguyen Xuan Bien ◽  
Vu Van Bo ◽  
Huynh Minh Huy ◽  
...  
Author(s):  
Jianqiang Yu ◽  
Xiaomin Dong ◽  
Xi Su ◽  
Xiangyuan Tao ◽  
Xin Li

2015 ◽  
Author(s):  
Liangxu Ma ◽  
Liangyao Yu ◽  
Jian Song ◽  
WenWei Xuan ◽  
Xuhui Liu

2019 ◽  
Vol 28 (9) ◽  
pp. 095013
Author(s):  
Wenfei Li ◽  
Haiping Du ◽  
Huan Zhang ◽  
Donghong Ning ◽  
Shuaishuai Sun ◽  
...  

2020 ◽  
Vol 64 (1-4) ◽  
pp. 439-446
Author(s):  
Gildas Diguet ◽  
Gael Sebald ◽  
Masami Nakano ◽  
Mickaël Lallart ◽  
Jean-Yves Cavaillé

Magneto Rheological Elastomers (MREs) are composite materials based on an elastomer filled by magnetic particles. Anisotropic MRE can be easily manufactured by curing the material under homogeneous magnetic field which creates column of particles. The magnetic and elastic properties are actually coupled making these MREs suitable for energy conversion. From these remarkable properties, an energy harvesting device is considered through the application of a DC bias magnetic induction on two MREs as a metal piece is applying an AC shear strain on them. Such strain therefore changes the permeabilities of the elastomers, hence generating an AC magnetic induction which can be converted into AC electrical signal with the help of a coil. The device is simulated with a Finite Element Method software to examine the effect of the MRE parameters, the DC bias magnetic induction and applied shear strain (amplitude and frequency) on the resulting electrical signal.


2006 ◽  
Author(s):  
L. Janssen ◽  
N. Anderson ◽  
R. Weber ◽  
P. Cassidy ◽  
T. Nelson
Keyword(s):  

2020 ◽  
Vol 15 (3) ◽  
pp. 37-48
Author(s):  
Zubair Rashid Wani ◽  
Manzoor Ahmad Tantray

The present research work is a part of a project was a semi-active structural control technique using magneto-rheological damper has to be performed. Magneto-rheological dampers are an innovative class of semi-active devices that mesh well with the demands and constraints of seismic applications; this includes having very low power requirements and adaptability. A small stroke magneto-rheological damper was mathematically simulated and experimentally tested. The damper was subjected to periodic excitations of different amplitudes and frequencies at varying voltage. The damper was mathematically modeled using parametric Modified Bouc-Wen model of magneto-rheological damper in MATLAB/SIMULINK and the parameters of the model were set as per the prototype available. The variation of mechanical properties of magneto-rheological damper like damping coefficient and damping force with a change in amplitude, frequency and voltage were experimentally verified on INSTRON 8800 testing machine. It was observed that damping force produced by the damper depended on the frequency as well, in addition to the input voltage and amplitude of the excitation. While the damping coefficient (c) is independent of the frequency of excitation it varies with the amplitude of excitation and input voltage. The variation of the damping coefficient with amplitude and input voltage is linear and quadratic respectively. More ever the mathematical model simulated in MATLAB was in agreement with the experimental results obtained.


2006 ◽  
Vol 3 (1) ◽  
pp. 27
Author(s):  
Mustaffa Samad

The Internet has been an integral part of the Information and Communication Technology (ICT) community in recent years. New internet users have been growing steadily over the years. This has lead to the depletion of new Internet Protocol (IP) addresses worldwide. To overcome this predicament, the new Internet Protocol version 6 (IPv6) had been introduced. The existing Internet Protocol version 4 (IPv4) is expected to be eventually replaced by this IPv6. The changeover from IPv4 to IPv6 is expected to be implemented progressively. During this transition period, these two protocols are expected to coexist for a number of years. IPv4-to-IPv6 transition tools have been designed to facilitate a smooth transition from IPv4 to IPv6. The two most basic IPv4-to-IPv6 transition tools available are the hybrid stack mechanism and tunneling. Tunneling is the encapsulation of IPv6 traffic within IPv4 packets so they can be sent over an IPv4 infrastructure. This project was initiated to set up an experimental IPv6 testbed, in order to study the performance as well as transition and migration issues of IPv6 networks under controlled conditions. This paper looks at how tunneling can be performed over existing internetwork infrastructure at Fakulti Kejuruteraan Elektrik (FKE), UiTM.


Sign in / Sign up

Export Citation Format

Share Document