Environmental and Socio-Economic Consequences of Recent Mountain Glacier Fluctuations in Norway

2021 ◽  
pp. 289-314
Author(s):  
Philipp Marr ◽  
Stefan Winkler ◽  
Jörg Löffler
1986 ◽  
Vol 26 (1) ◽  
pp. 27-48 ◽  
Author(s):  
Stephen C. Porter

Time series depicting mountain glacier fluctuations in the Alps display generally similar patterns over the last two centuries, as do chronologies of glacier variations for the same interval from elsewhere in the Northern Hemisphere. Episodes of glacier advance consistently are associated with intervals of high average volcanic aerosol production, as inferred from acidity variations in a Greenland ice core. Advances occur whenever acidity levels rise sharply from background values to reach concentrations ≥1.2 μequiv H+/kg above background. A phase lag of about 10–15 yr, equivalent to reported response lags of Alpine glacier termini, separates the beginning of acidity increases from the beginning of subsequent ice advances. A similar relationship, but based on limited and less-reliable historical data and on lichenometric ages, is found for the preceding 2 centuries. Calibrated radiocarbon dates related to advances of non-calving and non-surging glaciers during the earlier part of the Little Ice Age display a comparable consistent pattern. An interval of reduced acidity values between about 1090 and 1230 A.D. correlates with a time of inferred glacier contraction during the Medieval Optimum. The observed close relation between Noothern Hemisphere glacier fluctuations and variations in Greenland ice-core acidity suggests that sulfur-rich aerosols generated by volcanic eruptions are a primary forcing mechanism of glacier fluctuations, and therefore of climate, on a decadal scale. The amount of surface cooling attributable to individual large eruptions or to episodes of eruptions is simlar to the probable average temperature reduction during culminations of Little Ice Age alacier advances (ca. 0.5°–1.2°C), as inferred from depression of equilibrium-line altitudes.


1986 ◽  
Vol 8 ◽  
pp. 203
Author(s):  
Melinda M. Brugman

The terminus position of Shoestring Glacier, Mount St. Helens, has pulsated over the last few centuries, generally following local climate trends, but the pattern of advance and retreat has been strongly modulated by effects of local volcanic activity. In this paper, I discuss the techniques employed to map and survey fluctuations in ice velocity, thickness, and terminus position of Shoestring Glacier. Solutions to major problems in acquiring and interpreting data peculiar to an active volcano are also explained. Results show that this steep mountain glacier responds quickly and dramatically to local environmental changes. The effects of volcanic activity are distinguished from internal instabilities and local climate change by combining information obtained using a variety of techniques, including field surveying, contour-mapping using stereo-aerial photographs, photo-documentation, and published historical accounts, In this paper I will focus attention on surveying and mapping conducted since 1979 at Shoestring Glacier, but will also discuss methods used to identify historic and “prehistoric” glacier fluctuations back to the early 1800s. The field survey was conducted at the glacier from mid-1979 to late 1983, during several eruptive episodes, major earthquakes, and covering winter and summer velocity and thickness changes. (Brugman and Post, 1980; Brugman and Meier, 1981). Coordinates of glacier velocity markers and the survey reference net were monitored with several different theodolites and electronic distance meters. In addition, topographic maps of Shoestring Glacier and vicinity were made for the years between 1979 and 1982, for the purpose of characterizing the drastic changes which occurred during the volcanic eruption of Mount St. Helens of May 18, 1980. The maps were constructed with 2 m contour intervals, using three sets of vertical aerial photographs. The difference between maps results in two plots showing the surficial changes caused by the volcanic field-checked against ground survey data on thickness change, using standard techniques. Overall, this study included monitoring glacier flow, configuration, and thickness changes at Shoestring Glacier since mid-1979, and also monitoring any changes in the local survey net due to ground deformation associated with nearby volcanic activity. In addition, photographic and written documentation of recent glacier fluctuations at Mount St. Helens was compiled from a variety of sources, which included local explorers, scientists, mountaineers, aviators, and historians. From this information, I was able to obtain the general pattern of Shoestring Glacier terminus fluctuations since the early 1900s. To extend the study further back in time, I also mapped the local surficial geology surrounding Shoestring Glacier using aerial photographs and ground studies. Because Mount St. Helens is a highly active, young volcano, a major problem was to distinguish glacier moraines, built during a recent ice advance, from volcanic levees built during passage of a recent lahar. Both lahar levees and glacier moraines exist along the glacier margin and most have been dissected and scoured by later mudflows. This study required the separate identification of glacial lag-till, from mudflow and rock avalanche debris. Comparison of depositional and erosional features generated by the several major lahars which decended over the Shoestring Glacier during the 1980 eruptions to pre-1980 surficial geology shows that glacier and lahar deposits are closely intermingled, but they can be distinguished on the basis of surface morphology obtained from aerial photographs, supported by field mapping of sedimentary structures. The dominant pre-1980 surficial deposits were laid down during a time of intense volcanism dating from 1800-1857, when the Shoestring Glacier was initially at its most advanced terminus position in its limited geologic record. During the early 1900s, several minor historic eruptions deposited ash and debris as distinctive englacial debris layers, which were well preserved within the glaciers on Mount St. Helens. Rock material deposited in the early to mid-1800s from glacier advances and volcanic eruptions can be distinguished from volcanic material deposited during the early 1900s because of the minor effect these later eruptions had on the glaciers of Mount St. Helens. This study shows that, over the last few centuries, repeated eruptions of Mount St. Helens have caused important changes in the mass balance of Shoestring Glacier. During several volcanic eruptions since 1800, the Shoestring and nearby glaciers have been deeply blanketed with rock ejecta and avalanche and mudflow debris, which could have increased the glacier mass balances. In contrast, the dominant effect of major volcanic eruptions on the Shoestring Glacier has led to strongly negative mass balances due to scouring, melting, and blasting away of glacier snow and ice. Deep incision of the glacier and its surrounding topography is clearly evident from the maps produced during this study, both during and before 1980. This melting and scouring occurred as pyroclastic flows and lahars swept down the glacier-filled canyon from the summit of the volcano and has probably occurred repeatedly since the canyon holding the Shoestring Glacier was first cut, approximately two thousand years ago. The eruption of Mount St. Helens on May 18, 1980, when the Shoestring Glacier was beheaded, deeply incised, and covered by volcanic ejecta and mudflow debris, is the most recent example of the highly variable environment in which the glacier continues to survive.


1986 ◽  
Vol 8 ◽  
pp. 203-203
Author(s):  
Melinda M. Brugman

The terminus position of Shoestring Glacier, Mount St. Helens, has pulsated over the last few centuries, generally following local climate trends, but the pattern of advance and retreat has been strongly modulated by effects of local volcanic activity. In this paper, I discuss the techniques employed to map and survey fluctuations in ice velocity, thickness, and terminus position of Shoestring Glacier. Solutions to major problems in acquiring and interpreting data peculiar to an active volcano are also explained. Results show that this steep mountain glacier responds quickly and dramatically to local environmental changes. The effects of volcanic activity are distinguished from internal instabilities and local climate change by combining information obtained using a variety of techniques, including field surveying, contour-mapping using stereo-aerial photographs, photo-documentation, and published historical accounts, In this paper I will focus attention on surveying and mapping conducted since 1979 at Shoestring Glacier, but will also discuss methods used to identify historic and “prehistoric” glacier fluctuations back to the early 1800s.The field survey was conducted at the glacier from mid-1979 to late 1983, during several eruptive episodes, major earthquakes, and covering winter and summer velocity and thickness changes. (Brugman and Post, 1980; Brugman and Meier, 1981). Coordinates of glacier velocity markers and the survey reference net were monitored with several different theodolites and electronic distance meters. In addition, topographic maps of Shoestring Glacier and vicinity were made for the years between 1979 and 1982, for the purpose of characterizing the drastic changes which occurred during the volcanic eruption of Mount St. Helens of May 18, 1980. The maps were constructed with 2 m contour intervals, using three sets of vertical aerial photographs. The difference between maps results in two plots showing the surficial changes caused by the volcanic field-checked against ground survey data on thickness change, using standard techniques. Overall, this study included monitoring glacier flow, configuration, and thickness changes at Shoestring Glacier since mid-1979, and also monitoring any changes in the local survey net due to ground deformation associated with nearby volcanic activity.In addition, photographic and written documentation of recent glacier fluctuations at Mount St. Helens was compiled from a variety of sources, which included local explorers, scientists, mountaineers, aviators, and historians. From this information, I was able to obtain the general pattern of Shoestring Glacier terminus fluctuations since the early 1900s.To extend the study further back in time, I also mapped the local surficial geology surrounding Shoestring Glacier using aerial photographs and ground studies. Because Mount St. Helens is a highly active, young volcano, a major problem was to distinguish glacier moraines, built during a recent ice advance, from volcanic levees built during passage of a recent lahar. Both lahar levees and glacier moraines exist along the glacier margin and most have been dissected and scoured by later mudflows. This study required the separate identification of glacial lag-till, from mudflow and rock avalanche debris. Comparison of depositional and erosional features generated by the several major lahars which decended over the Shoestring Glacier during the 1980 eruptions to pre-1980 surficial geology shows that glacier and lahar deposits are closely intermingled, but they can be distinguished on the basis of surface morphology obtained from aerial photographs, supported by field mapping of sedimentary structures. The dominant pre-1980 surficial deposits were laid down during a time of intense volcanism dating from 1800-1857, when the Shoestring Glacier was initially at its most advanced terminus position in its limited geologic record. During the early 1900s, several minor historic eruptions deposited ash and debris as distinctive englacial debris layers, which were well preserved within the glaciers on Mount St. Helens. Rock material deposited in the early to mid-1800s from glacier advances and volcanic eruptions can be distinguished from volcanic material deposited during the early 1900s because of the minor effect these later eruptions had on the glaciers of Mount St. Helens.This study shows that, over the last few centuries, repeated eruptions of Mount St. Helens have caused important changes in the mass balance of Shoestring Glacier. During several volcanic eruptions since 1800, the Shoestring and nearby glaciers have been deeply blanketed with rock ejecta and avalanche and mudflow debris, which could have increased the glacier mass balances. In contrast, the dominant effect of major volcanic eruptions on the Shoestring Glacier has led to strongly negative mass balances due to scouring, melting, and blasting away of glacier snow and ice. Deep incision of the glacier and its surrounding topography is clearly evident from the maps produced during this study, both during and before 1980. This melting and scouring occurred as pyroclastic flows and lahars swept down the glacier-filled canyon from the summit of the volcano and has probably occurred repeatedly since the canyon holding the Shoestring Glacier was first cut, approximately two thousand years ago. The eruption of Mount St. Helens on May 18, 1980, when the Shoestring Glacier was beheaded, deeply incised, and covered by volcanic ejecta and mudflow debris, is the most recent example of the highly variable environment in which the glacier continues to survive.


2021 ◽  
Author(s):  
◽  
Shaun Eaves

<p>Understanding the drivers and mechanisms of past, natural changes in Earth’s climate is a fundamental goal of palaeoclimate science. Recent advances in cosmogenic surface exposure dating and numerical glacier modelling have greatly improved the utility of geological glacial records for palaeoclimatic reconstruction. Here, I apply these techniques to investigate the timing and magnitude of late Quaternary mountain glacier fluctuations on Tongariro massif and Mt. Ruapehu volcanoes in central North Island, New Zealand (39°S).  First, I constrain the local cosmogenic ³He production rate, in order to compare my subsequent ³He moraine chronologies with other well-dated palaeoclimate records. I present a new radiocarbon age for a large debris avalanche event on the northwest slopes of Mt. Ruapehu that occurred at 10.4-10.6 cal. ka BP. Cosmogenic ³He concentrations in surficial boulders deposited during this event are consistent with that predicted by a global compilation of similar production rate calibrations. Thus, I conclude that this globally compiled production rate is suitable for cosmogenic ³He exposure age calculations in New Zealand.  Exposure ages from moraine boulders on both volcanoes constrain the timing of two periods of glaciation during the last glacial cycle, when the termini of valley glaciers reached c. 1200 m asl. The most recent of these events occurred between c. 31-17 ka, which corresponds with the global Last Glacial Maximum. During this period, the local equilibrium line altitude was depressed by c. 800-1100 m. Numerical model simulations of the glaciers, using a coupled energy balance/ice flow model, suggest that local atmospheric temperature was 4-7 °C colder than present. This palaeotemperature estimate is not greatly impacted by post-glacial topographic change on these active volcanoes. Surface exposure ages from a degraded lateral moraine on Tongariro massif indicate that an earlier period of glaciation, of similar extent to that at the LGM, culminated during Marine Isotope Stage 4.  During the last glacial-interglacial transition (c. 18-11 ka), glacial retreat on Mt. Ruapehu was interrupted by a re-advance during the late-glacial (c. 15-11 ka). Exposure ages for this event exhibit some scatter, likely due to surface processes. Accounting for these processes with a topographic diffusion model yields a best-estimate age of 14-13 ka, corresponding to the Lateglacial reversal in New Zealand. Glacier model experiments indicate this re-advance resulted from a temperature lowering of 2.5-3.4 °C relative to present. Comparison with other proxy records suggests that this cooling was most pronounced during summer. Due to its lower elevation, it is unlikely that glaciers were present on Tongariro massif at this time.  The results of this research provide the first direct age constraint and quantitative palaeoclimate reconstructions for late Quaternary glacier fluctuations in central North Island, New Zealand. The timing and magnitude of these changes are in good agreement with glacial records from the Southern Alps and South America. This suggests that glaciers in the southern mid-latitudes were responding to common climatic forcings at orbital- and millennial-timescales, during the last glacial cycle.</p>


Boreas ◽  
2020 ◽  
Vol 49 (4) ◽  
pp. 873-885
Author(s):  
Melody Biette ◽  
Vincent Jomelli ◽  
Marie Chenet ◽  
Régis Braucher ◽  
Vincent Rinterknecht ◽  
...  

2021 ◽  
Author(s):  
◽  
Shaun Eaves

<p>Understanding the drivers and mechanisms of past, natural changes in Earth’s climate is a fundamental goal of palaeoclimate science. Recent advances in cosmogenic surface exposure dating and numerical glacier modelling have greatly improved the utility of geological glacial records for palaeoclimatic reconstruction. Here, I apply these techniques to investigate the timing and magnitude of late Quaternary mountain glacier fluctuations on Tongariro massif and Mt. Ruapehu volcanoes in central North Island, New Zealand (39°S).  First, I constrain the local cosmogenic ³He production rate, in order to compare my subsequent ³He moraine chronologies with other well-dated palaeoclimate records. I present a new radiocarbon age for a large debris avalanche event on the northwest slopes of Mt. Ruapehu that occurred at 10.4-10.6 cal. ka BP. Cosmogenic ³He concentrations in surficial boulders deposited during this event are consistent with that predicted by a global compilation of similar production rate calibrations. Thus, I conclude that this globally compiled production rate is suitable for cosmogenic ³He exposure age calculations in New Zealand.  Exposure ages from moraine boulders on both volcanoes constrain the timing of two periods of glaciation during the last glacial cycle, when the termini of valley glaciers reached c. 1200 m asl. The most recent of these events occurred between c. 31-17 ka, which corresponds with the global Last Glacial Maximum. During this period, the local equilibrium line altitude was depressed by c. 800-1100 m. Numerical model simulations of the glaciers, using a coupled energy balance/ice flow model, suggest that local atmospheric temperature was 4-7 °C colder than present. This palaeotemperature estimate is not greatly impacted by post-glacial topographic change on these active volcanoes. Surface exposure ages from a degraded lateral moraine on Tongariro massif indicate that an earlier period of glaciation, of similar extent to that at the LGM, culminated during Marine Isotope Stage 4.  During the last glacial-interglacial transition (c. 18-11 ka), glacial retreat on Mt. Ruapehu was interrupted by a re-advance during the late-glacial (c. 15-11 ka). Exposure ages for this event exhibit some scatter, likely due to surface processes. Accounting for these processes with a topographic diffusion model yields a best-estimate age of 14-13 ka, corresponding to the Lateglacial reversal in New Zealand. Glacier model experiments indicate this re-advance resulted from a temperature lowering of 2.5-3.4 °C relative to present. Comparison with other proxy records suggests that this cooling was most pronounced during summer. Due to its lower elevation, it is unlikely that glaciers were present on Tongariro massif at this time.  The results of this research provide the first direct age constraint and quantitative palaeoclimate reconstructions for late Quaternary glacier fluctuations in central North Island, New Zealand. The timing and magnitude of these changes are in good agreement with glacial records from the Southern Alps and South America. This suggests that glaciers in the southern mid-latitudes were responding to common climatic forcings at orbital- and millennial-timescales, during the last glacial cycle.</p>


2003 ◽  
pp. 83-100 ◽  
Author(s):  
A. Radygin ◽  
R. Entov

The paper deals with theoretical approaches to the problems of property rights and contractual obligations and with analysis of economic consequences of the imperfect enforcement system. In particular, the authors consider Russian experience in the sphere of corporate conflicts. Legal and practical recommendations related to the improvement of legal framework, judiciary reform, executory process and different federal and regional authorities are also presented.


2006 ◽  
pp. 87-96
Author(s):  
Yu. Shvetsov

The article considers the problem of bureaucratisation of the state and the most important social and economic consequences of this phenomenon. The essence of bureaucracy has been revealed, characteristic features of its functioning in Russia have been analyzed; the material base of bureaucracy and its dominating status in the society have been substantiated. The conclusion has been made that the process of changing the role of the budget to serve the interests of bureaucracy is being accomplished.


2014 ◽  
Vol 23 (1) ◽  
pp. 103-124 ◽  
Author(s):  
Daniel Kopasker

Existing research has consistently shown that perceptions of the potential economic consequences of Scottish independence are vital to levels of support for constitutional change. This paper attempts to investigate the mechanism by which expectations of the economic consequences of independence are formed. A hypothesised causal micro-level mechanism is tested that relates constitutional preferences to the existing skill investments of the individual. Evidence is presented that larger skill investments are associated with a greater likelihood of perceiving economic threats from independence. Additionally, greater perceived threat results in lower support for independence. The impact of uncertainty on both positive and negative economic expectations is also examined. While uncertainty has little effect on negative expectations, it significantly reduces the likelihood of those with positive expectations supporting independence. Overall, it appears that a general economy-wide threat is most significant, and it is conjectured that this stems a lack of information on macroeconomic governance credentials.


Sign in / Sign up

Export Citation Format

Share Document