scholarly journals A Framework for Curvature-Based CAD Mesh Partitioning

Author(s):  
Yifan Qie ◽  
Lihong Qiao ◽  
Nabil Anwer

AbstractIn ISO Geometrical Product Specifications and Verification Standards (GPS) [1], partition is one of the fundamental operations used to obtain ideal or non-ideal features of a product. The operation of partition produces independent geometrical features by decomposing the object. A curvature-based CAD mesh partitioning framework is proposed in this paper. The framework combines several key steps including curvature-based attribute calculation, local shape type refinement, region growing, slippage analysis and statistical modeling. The partitioned features are classified into seven invariance classes of surface in the context of ISO GPS. A case study shows that not only appropriate partitioning but also accurate invariance class recognition for GPS are achieved by the proposed framework.

Somatechnics ◽  
2019 ◽  
Vol 9 (2-3) ◽  
pp. 188-205
Author(s):  
Sofia Varino

This article follows the trajectories of gluten in the context of Coeliac disease as a gastrointestinal condition managed by lifelong adherence to a gluten-free diet. Oriented by the concept of gluten as an actant (Latour), I engage in an analysis of gluten as a participant in volatile relations of consumption, contact, and contamination across coeliac eating. I ask questions about biomedical knowledge production in the context of everyday dietary practices alongside two current scientific research projects developing gluten-degrading enzymes and gluten-free wheat crops. Following the new materialisms of theorists like Elizabeth A. Wilson, Jane Bennett, Donna Haraway and Bruno Latour, I approach gluten as an alloy, an impure object, a hybrid assemblage with self-organizing and disorganizing capacity, not entirely peptide chain nor food additive, not only allergen but also the chewy, sticky substance that gives pizza dough its elastic, malleable consistency. Tracing the trajectories of gluten, this article is a case study of the tricky, slippery capacity of matter to participate in processes of scientific knowledge production.


2017 ◽  
Vol 23 (32) ◽  
pp. 4773-4793 ◽  
Author(s):  
Nivedita Singh ◽  
Sherry Freiesleben ◽  
Olaf Wolkenhauer ◽  
Yogeshwer Shukla ◽  
Shailendra K. Gupta

The identification and validation of novel drug–target combinations are key steps in the drug discovery processes. Cancer is a complex disease that involves several genetic and environmental factors. High-throughput omics technologies are now widely available, however the integration of multi-omics data to identify viable anticancer drug-target combinations, that allow for a better clinical outcome when considering the efficacy-toxicity spectrum, is challenging. This review article provides an overview of systems approaches which help to integrate a broad spectrum of technologies and data. We focus on network approaches and investigate anticancer mechanism and biological targets of resveratrol using reverse pharmacophore mapping as an in-depth case study. The results of this case study demonstrate the use of systems approaches for a better understanding of the behavior of small molecule inhibitors in receptor binding sites. The presented network analysis approach helps in formulating hypotheses and provides mechanistic insights of resveratrol in neoplastic transformations.


2019 ◽  
Vol 19 (10) ◽  
pp. 2079-2095 ◽  
Author(s):  
Michele Perrotti ◽  
Piernicola Lollino ◽  
Nunzio Luciano Fazio ◽  
Mario Parise

Abstract. The stability of man-made underground cavities in soft rocks interacting with overlying structures and infrastructures represents a challenging problem to be faced. Based upon the results of a large number of parametric two-dimensional (2-D) finite-element analyses of ideal cases of underground cavities, accounting for the variability both cave geometrical features and rock mechanical properties, specific charts have been recently proposed in the literature to assess at a preliminary stage the stability of the cavities. The purpose of the present paper is to validate the efficacy of the stability charts through the application to several case studies of underground cavities, considering both quarries collapsed in the past and quarries still stable. The stability graphs proposed by Perrotti et al. (2018) can be useful to evaluate, in a preliminary way, a safety margin for cavities that have not reached failure and to detect indications of predisposition to local or general instability phenomena. Alternatively, for sinkholes that already occurred, the graphs may be useful in identifying the conditions that led to the collapse, highlighting the importance of some structural elements (as pillars and internal walls) on the overall stability of the quarry system.


2017 ◽  
Vol 42 (02) ◽  
pp. 377-397 ◽  
Author(s):  
Martina Kolanoski

International law dictates that actors in armed conflicts must distinguish between combatants and civilians. But how do legal actors assess the legality of a military operation after the fact? I analyze a civil proceeding for compensation by victims of a German-led airstrike in Afghanistan. The court treated military video as key evidence. I show how lawyers, judges, and expert witnesses categorized those involved by asking what a “military viewer” would make of the pictures. During the hearing, they avoided the categories of combatants/civilians; the military object resisted legal coding. I examine the decision in its procedural context, using ethnographic field notes and legal documents. I combine two ethnomethodological analytics: a trans-sequential approach and membership categorization analysis. I show the value of this combination for the sociological analysis of legal practice. I also propose that legal practitioners should use this approach to assess military viewing as a concerted, situated activity.


2021 ◽  
Author(s):  
Henrik Singmann ◽  
Gregory Edward Cox ◽  
David Kellen ◽  
Suyog Chandramouli ◽  
Clintin Davis-Stober ◽  
...  

Statistical modeling is generally meant to describe patterns in data in service of the broader scientific goal of developing theories to explain those patterns. Statistical models support meaningful inferences when models are built so as to align parameters of the model with potential causal mechanisms and how they manifest in data. When statistical models are instead based on assumptions chosen by default, Attempts to draw inferences can be uninformative or even paradoxical—in essence, the tail is trying to wag the dog.These issues are illustrated by van Doorn et al. (in press) in the context of using BayesFactors to identify effects and interactions in linear mixed models. We show that the problems identified in their applications can be circumvented by using priors over inherently meaningful units instead of default priors on standardized scales. This case study illustrates how researchers must directly engage with a number of substantive issues in order to support meaningful inferences, of which we highlight two: The first is the problem of coordination, which requires a researcher to specify how the theoretical constructs postulated by a model are functionally related to observable variables. The second is the problem of generalization, which requires a researcher to consider how a model may represent theoretical constructs shared across similar but non-identical situations, along with the fact that model comparison metrics like Bayes Factors do not directly address this form of generalization. For statistical modeling to serve the goals of science, models cannot be based on default assumptions, but should instead be based on an understanding of their coordination function and on how they represent causal mechanisms that may be expected to generalize to other related scenarios.


2018 ◽  
Vol 77 (3) ◽  
Author(s):  
Maryam Ghazanfari Shabankareh ◽  
Hakimeh Amanipoor ◽  
Sedigheh Battaleb-Looie ◽  
Javad Dravishi Khatooni

Author(s):  
S. Gregory Hatcher ◽  
James A. Bunch ◽  
Donald L. Roberts

The issues associated with incorporating intelligent transportation systems (ITS) strategies into alternatives analysis planning studies such as major investment studies (MIS), which have emerged since the Intermodal Surface Transportation Efficiency Act was passed in 1991, are discussed. The challenges and implications of including ITS in three of the key steps of the MIS process—problem definition, alternative definition, and analysis—are examined. As context for the specific issues addressed, a case study is presented on incorporating ITS into a corridor planning process that is being conducted using Seattle data. Critical to incorporating ITS elements within an MIS process is developing a problem statement, goals and objectives, and measures of effectiveness that are sensitive to ITS and other operational improvements for the corridor or subarea under study. Traditional MIS processes have focused on facility/service improvements and on average conditions and demand. ITS strategies, on the other hand, aim at improving ( a) operations; ( b) response to nonrecurrent conditions; and ( c) providing better information. To be able to address ITS strategies, the analysis approach used in an MIS should be sensitive to these issues. An illustration of how ITS strategies are being incorporated and evaluated in the Seattle (MIS-like) case study concludes the discussion.


2014 ◽  
Vol 54 (2) ◽  
pp. 1
Author(s):  
Randall Taylor ◽  
Simon Cordery ◽  
Sebastian Nixon ◽  
Karel Driml

This case-study demonstrates seismic processing in the presence of Horizontal Transverse Isotropic (HTI) velocity anisotropy encountered in a low-fold land 3D survey in New Zealand. The HTI velocity anisotropy was unexpected, being suspected only after the initial poor stack response compared to vintage 2D sections in the area, and the sparse 3D design made it difficult to identify. The paper shows how anisotropy was singled out from other possible causes, such as geometry errors. We discuss the key steps of the processing flow incorporated to deal with the HTI anisotropy to attain a high quality final processed volume. In particular we show data examples after the application of azimuthally dependant NMO velocities, along with pre-stack HTI migration. Examples are shown which demonstrate the preservation of the HTI anisotropy before and after 5D trace interpolation. Maps and vertical profiles of 3D attributes are used to demonstrate the magnitude and direction of the HTI velocity field, which varies 5% to 10% between the fast and slow horizontal directions. These observations coincide with the local stress state deduced from borehole break-out studies. We conclude that the fast velocity direction corresponds to the present maximum horizontal stress direction. Finally the paper summarises the implications for processing wide azimuth 3D data in this area and suggests improvements for future 3D survey design. This paper was originally published in the Proceedings of the 23rd International Geophysical Conference and Exhibition, which was held from 11–14 August 2013 in Melbourne, Australia.


Sign in / Sign up

Export Citation Format

Share Document