scholarly journals Multilanguage Speech-Based Gender Classification Using Time-Frequency Features and SVM Classifier

Author(s):  
Taiba Majid Wani ◽  
Teddy Surya Gunawan ◽  
Hasmah Mansor ◽  
Syed Asif Ahmad Qadri ◽  
Ali Sophian ◽  
...  
2019 ◽  
Vol 19 (03) ◽  
pp. 1950008
Author(s):  
MONALISA MOHANTY ◽  
PRADYUT BISWAL ◽  
SUKANTA SABUT

Ventricular tachycardia (VT) and ventricular fibrillation (VF) are the life-threatening ventricular arrhythmias that require treatment in an emergency. Detection of VT and VF at an early stage is crucial for achieving the success of the defibrillation treatment. Hence an automatic system using computer-aided diagnosis tool is helpful in detecting the ventricular arrhythmias in electrocardiogram (ECG) signal. In this paper, a discrete wavelet transform (DWT) was used to denoise and decompose the ECG signals into different consecutive frequency bands to reduce noise. The methodology was tested using ECG data from standard CU ventricular tachyarrhythmia database (CUDB) and MIT-BIH malignant ventricular ectopy database (VFDB) datasets of PhysioNet databases. A set of time-frequency features consists of temporal, spectral, and statistical were extracted and ranked by the correlation attribute evaluation with ranker search method in order to improve the accuracy of detection. The ranked features were classified for VT and VF conditions using support vector machine (SVM) and decision tree (C4.5) classifier. The proposed DWT based features yielded the average sensitivity of 98%, specificity of 99.32%, and accuracy of 99.23% using a decision tree (C4.5) classifier. These results were better than the SVM classifier having an average accuracy of 92.43%. The obtained results prove that using DWT based time-frequency features with decision tree (C4.5) classifier can be one of the best choices for clinicians for precise detection of ventricular arrhythmias.


2020 ◽  
Vol 26 (3) ◽  
pp. 155-160
Author(s):  
Aicha Mokdad ◽  
Sidi Mohammed El Amine Debbal ◽  
Fadia Meziani

AbstractElectromyogram signal (EMG) provides an important source of information for the diagnosis of neuromuscular disorders. In this study, we proposed two methods of analysis which concern the bispectrum and continuous wavelet transform (CWT) of the EMG signal then a comparison is made to select which one is the most suitable to identify an abnormality in biceps brachii muscle in the main purpose is to assess the pathological severity in bifrequency and time-frequency analysis applying respectively bispectrum and CWT. Then four time and frequency features are extracted and three popular machine learning algorithms are implemented to differentiate neuropathy and healthy conditions of the selected muscle. The performance of these time and frequency features are compared using support vector machine (SVM), linear discriminate analysis (LDA) and K-Nearest Neighbor (KNN) classifier performance. The results obtained showed that the SVM classifier yielded the best performance with an accuracy of 95.8%, precision of 92.59% and specificity of 92%. followed by respectively KNN and LDA classifier that achieved respectively an accuracy of 92% and 91.5%, precision of 92% and 85.4%, and specificity of 92% and 83%.


2021 ◽  
Author(s):  
Rejith K.N ◽  
Kamalraj Subramaniam ◽  
Ayyem Pillai Vasudevan Pillai ◽  
Roshini T V ◽  
Renjith V. Ravi ◽  
...  

Abstract In this work, PD patients and healthy individuals were categorized with machine-learning algorithms. EEG signals associated with six different emotions, (Happiness(E1), Sadness(E2), Fear(E3), Anger(E4), Surprise,(E5) and disgust(E6)) were used for the study. EEG data were collected from 20 PD patients and 20 normal controls using multimodal stimuli. Different features were used to categorize emotional data. Emotional recognition in Parkinson’s disease (PD) has been investigated in three domains namely, time, frequency and time frequency using Entropy, Energy-Entropy and Teager Energy-Entropy features. Three classifiers namely, K-Nearest Neighbor Algorithm, Support Vector Machine and Probabilistic Neural Network were used to observethe classification results. Emotional EEG stimuli such as anger, surprise, happiness, sadness, fear, and disgust were used to categorize PD patients and healthy controls (HC). For each EEG signal, frequency features corresponding to alpha, beta and gamma bands were obtained for nine feature extraction methods (Entropy, Energy Entropy, Teager Energy Entropy, Spectral Entropy, Spectral Energy-Entropy, Spectral Teager Energy-Entropy, STFT Entropy, STFT Energy-Entropy and STFT Teager Energy-Entropy). From the analysis, it is observed that the entropy feature in frequency domain performs evenly well (above 80 %) for all six emotions with KNN. Classification results shows that using the selected energy entropy combination feature in frequency domain provides highest accuracy for all emotions except E1 and E2 for KNN and SVM classifier, whereas other features give accuracy values of above 60% for most emotions.It is also observed that emotion E1 gives above 90 % classification accuracy for all classifiers in time domain.In frequency domain also, emotion E1 gives above 90% classification accuracy using PNN classifier.


2018 ◽  
Vol 29 (4) ◽  
pp. 045004 ◽  
Author(s):  
Wei He ◽  
Yigang He ◽  
Qiwu Luo ◽  
Chaolong Zhang

Sign in / Sign up

Export Citation Format

Share Document