scholarly journals Synthesizing Context-free Grammars from Recurrent Neural Networks

Author(s):  
Daniel M. Yellin ◽  
Gail Weiss

AbstractWe present an algorithm for extracting a subclass of the context free grammars (CFGs) from a trained recurrent neural network (RNN). We develop a new framework, pattern rule sets (PRSs), which describe sequences of deterministic finite automata (DFAs) that approximate a non-regular language. We present an algorithm for recovering the PRS behind a sequence of such automata, and apply it to the sequences of automata extracted from trained RNNs using the $$L^{*}$$ L ∗ algorithm. We then show how the PRS may converted into a CFG, enabling a familiar and useful presentation of the learned language.Extracting the learned language of an RNN is important to facilitate understanding of the RNN and to verify its correctness. Furthermore, the extracted CFG can augment the RNN in classifying correct sentences, as the RNN’s predictive accuracy decreases when the recursion depth and distance between matching delimiters of its input sequences increases.

2010 ◽  
Vol 21 (05) ◽  
pp. 843-858 ◽  
Author(s):  
ANDREAS MALCHER ◽  
CARLO MEREGHETTI ◽  
BEATRICE PALANO

Iterative arrays (IAs) are a parallel computational model with a sequential processing of the input. They are one-dimensional arrays of interacting identical deterministic finite automata. In this paper, realtime-IAs with sublinear space bounds are used to recognize formal languages. The existence of an infinite proper hierarchy of space complexity classes between logarithmic and linear space bounds is proved. Some decidability questions on logarithmically space bounded realtime-IAs are investigated, and an optimal logarithmic space lower bound for non-regular language recognition on realtime-IAs is shown. Finally, some non-recursive trade-offs between space bounded realtime-IAs are emphasized.


2007 ◽  
Vol 18 (06) ◽  
pp. 1407-1416 ◽  
Author(s):  
KAI SALOMAA ◽  
PAUL SCHOFIELD

It is known that the neighborhood of a regular language with respect to an additive distance is regular. We introduce an additive weighted finite automaton model that provides a conceptually simple way to reprove this result. We consider the state complexity of converting additive weighted finite automata to deterministic finite automata. As our main result we establish a tight upper bound for the state complexity of the conversion.


2019 ◽  
Vol 30 (01) ◽  
pp. 115-134 ◽  
Author(s):  
Michal Hospodár ◽  
Galina Jirásková ◽  
Peter Mlynárčik

We examine the descriptional complexity of the forever operator, which assigns the language [Formula: see text] to a regular language [Formula: see text], and we investigate the trade-offs between various models of finite automata. We consider complete and partial deterministic finite automata, nondeterministic finite automata with single or multiple initial states, alternating, and Boolean finite automata. We assume that the argument and the result of this operation are accepted by automata belonging to one of these six models. We investigate all possible trade-offs and provide a tight upper bound for 32 of 36 of them. The most interesting result is the trade-off from nondeterministic to deterministic automata given by the Dedekind number [Formula: see text]. We also prove that the nondeterministic state complexity of [Formula: see text] is [Formula: see text] which solves an open problem stated by Birget [The state complexity of [Formula: see text] and its connection with temporal logic, Inform. Process. Lett. 58 (1996) 185–188].


2002 ◽  
Vol 84 (6) ◽  
pp. 339-344 ◽  
Author(s):  
Michael Domaratzki ◽  
Giovanni Pighizzini ◽  
Jeffrey Shallit

2021 ◽  
Vol 58 (4) ◽  
pp. 263-279
Author(s):  
Henning Bordihn ◽  
György Vaszil

AbstractWe study the concept of reversibility in connection with parallel communicating systems of finite automata (PCFA in short). We define the notion of reversibility in the case of PCFA (also covering the non-deterministic case) and discuss the relationship of the reversibility of the systems and the reversibility of its components. We show that a system can be reversible with non-reversible components, and the other way around, the reversibility of the components does not necessarily imply the reversibility of the system as a whole. We also investigate the computational power of deterministic centralized reversible PCFA. We show that these very simple types of PCFA (returning or non-returning) can recognize regular languages which cannot be accepted by reversible (deterministic) finite automata, and that they can even accept languages that are not context-free. We also separate the deterministic and non-deterministic variants in the case of systems with non-returning communication. We show that there are languages accepted by non-deterministic centralized PCFA, which cannot be recognized by any deterministic variant of the same type.


2017 ◽  
Vol 28 (05) ◽  
pp. 503-522
Author(s):  
Holger Bock Axelsen ◽  
Markus Holzer ◽  
Martin Kutrib

Recently, a method to decide the NL-complete problem of whether the language accepted by a given deterministic finite automaton (DFA) can also be accepted by some reversible deterministic finite automaton (REV-DFA) has been derived. Here, we show that the corresponding problem for nondeterministic finite automata (NFA) is PSPACE-complete. The recent DFA method essentially works by minimizing the DFA and inspecting it for a forbidden pattern. We here study the degree of irreversibility for a regular language, the minimal number of such forbidden patterns necessary in any DFA accepting the language, and show that the degree induces a strict infinite hierarchy of language families. We examine how the degree of irreversibility behaves under the usual language operations union, intersection, complement, concatenation, and Kleene star, showing tight bounds (some asymptotically) on the degree.


2011 ◽  
Vol 21 (04) ◽  
pp. 265-276 ◽  
Author(s):  
RUDY SETIONO ◽  
BART BAESENS ◽  
CHRISTOPHE MUES

While feedforward neural networks have been widely accepted as effective tools for solving classification problems, the issue of finding the best network architecture remains unresolved, particularly so in real-world problem settings. We address this issue in the context of credit card screening, where it is important to not only find a neural network with good predictive performance but also one that facilitates a clear explanation of how it produces its predictions. We show that minimal neural networks with as few as one hidden unit provide good predictive accuracy, while having the added advantage of making it easier to generate concise and comprehensible classification rules for the user. To further reduce model size, a novel approach is suggested in which network connections from the input units to this hidden unit are removed by a very straightaway pruning procedure. In terms of predictive accuracy, both the minimized neural networks and the rule sets generated from them are shown to compare favorably with other neural network based classifiers. The rules generated from the minimized neural networks are concise and thus easier to validate in a real-life setting.


Sign in / Sign up

Export Citation Format

Share Document