A Novel Approach to Data Augmentation for Document Image Classification Using Deep Convolutional Generative Adversarial Networks

Author(s):  
Aissam Jadli ◽  
Mustapha Hain ◽  
Abderrahman Jaize
Author(s):  
Oleksandr Chaikovskyi ◽  
Artem Volokyta ◽  
Artemi Kyrianov ◽  
Heorhii Loutskii

The article discusses a data augmentation method based on generative adversarial networks to improve the accuracy of image classification by convolutional neural networks. A comparative analysis of the proposed method with classical image augmentation methods was performed.


2021 ◽  
Vol 11 (7) ◽  
pp. 3086
Author(s):  
Ricardo Silva Peres ◽  
Miguel Azevedo ◽  
Sara Oleiro Araújo ◽  
Magno Guedes ◽  
Fábio Miranda ◽  
...  

The technological advances brought forth by the Industry 4.0 paradigm have renewed the disruptive potential of artificial intelligence in the manufacturing sector, building the data-driven era on top of concepts such as Cyber–Physical Systems and the Internet of Things. However, data availability remains a major challenge for the success of these solutions, particularly concerning those based on deep learning approaches. Specifically in the quality inspection of structural adhesive applications, found commonly in the automotive domain, defect data with sufficient variety, volume and quality is generally costly, time-consuming and inefficient to obtain, jeopardizing the viability of such approaches due to data scarcity. To mitigate this, we propose a novel approach to generate synthetic training data for this application, leveraging recent breakthroughs in training generative adversarial networks with limited data to improve the performance of automated inspection methods based on deep learning, especially for imbalanced datasets. Preliminary results in a real automotive pilot cell show promise in this direction, with the approach being able to generate realistic adhesive bead images and consequently object detection models showing improved mean average precision at different thresholds when trained on the augmented dataset. For reproducibility purposes, the model weights, configurations and data encompassed in this study are made publicly available.


2021 ◽  
Vol 11 (14) ◽  
pp. 6368
Author(s):  
Fátima A. Saiz ◽  
Garazi Alfaro ◽  
Iñigo Barandiaran ◽  
Manuel Graña

This paper describes the application of Semantic Networks for the detection of defects in images of metallic manufactured components in a situation where the number of available samples of defects is small, which is rather common in real practical environments. In order to overcome this shortage of data, the common approach is to use conventional data augmentation techniques. We resort to Generative Adversarial Networks (GANs) that have shown the capability to generate highly convincing samples of a specific class as a result of a game between a discriminator and a generator module. Here, we apply the GANs to generate samples of images of metallic manufactured components with specific defects, in order to improve training of Semantic Networks (specifically DeepLabV3+ and Pyramid Attention Network (PAN) networks) carrying out the defect detection and segmentation. Our process carries out the generation of defect images using the StyleGAN2 with the DiffAugment method, followed by a conventional data augmentation over the entire enriched dataset, achieving a large balanced dataset that allows robust training of the Semantic Network. We demonstrate the approach on a private dataset generated for an industrial client, where images are captured by an ad-hoc photometric-stereo image acquisition system, and a public dataset, the Northeastern University surface defect database (NEU). The proposed approach achieves an improvement of 7% and 6% in an intersection over union (IoU) measure of detection performance on each dataset over the conventional data augmentation.


Sign in / Sign up

Export Citation Format

Share Document