scholarly journals DATA AUGMENTATION METHOD USING GENERATIVE ADVERSARIAL NETWORKS

Author(s):  
Oleksandr Chaikovskyi ◽  
Artem Volokyta ◽  
Artemi Kyrianov ◽  
Heorhii Loutskii

The article discusses a data augmentation method based on generative adversarial networks to improve the accuracy of image classification by convolutional neural networks. A comparative analysis of the proposed method with classical image augmentation methods was performed.

2021 ◽  
Vol 11 (15) ◽  
pp. 6721
Author(s):  
Jinyeong Wang ◽  
Sanghwan Lee

In increasing manufacturing productivity with automated surface inspection in smart factories, the demand for machine vision is rising. Recently, convolutional neural networks (CNNs) have demonstrated outstanding performance and solved many problems in the field of computer vision. With that, many machine vision systems adopt CNNs to surface defect inspection. In this study, we developed an effective data augmentation method for grayscale images in CNN-based machine vision with mono cameras. Our method can apply to grayscale industrial images, and we demonstrated outstanding performance in the image classification and the object detection tasks. The main contributions of this study are as follows: (1) We propose a data augmentation method that can be performed when training CNNs with industrial images taken with mono cameras. (2) We demonstrate that image classification or object detection performance is better when training with the industrial image data augmented by the proposed method. Through the proposed method, many machine-vision-related problems using mono cameras can be effectively solved by using CNNs.


Mathematics ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 624
Author(s):  
Stefan Rohrmanstorfer ◽  
Mikhail Komarov ◽  
Felix Mödritscher

With the always increasing amount of image data, it has become a necessity to automatically look for and process information in these images. As fashion is captured in images, the fashion sector provides the perfect foundation to be supported by the integration of a service or application that is built on an image classification model. In this article, the state of the art for image classification is analyzed and discussed. Based on the elaborated knowledge, four different approaches will be implemented to successfully extract features out of fashion data. For this purpose, a human-worn fashion dataset with 2567 images was created, but it was significantly enlarged by the performed image operations. The results show that convolutional neural networks are the undisputed standard for classifying images, and that TensorFlow is the best library to build them. Moreover, through the introduction of dropout layers, data augmentation and transfer learning, model overfitting was successfully prevented, and it was possible to incrementally improve the validation accuracy of the created dataset from an initial 69% to a final validation accuracy of 84%. More distinct apparel like trousers, shoes and hats were better classified than other upper body clothes.


Electronics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 118
Author(s):  
Holly Burrows ◽  
Javad Zarrin ◽  
Lakshmi Babu-Saheer ◽  
Mahdi Maktab-Dar-Oghaz

It is becoming increasingly apparent that a significant amount of the population suffers from mental health problems, such as stress, depression, and anxiety. These issues are a result of a vast range of factors, such as genetic conditions, social circumstances, and lifestyle influences. A key cause, or contributor, for many people is their work; poor mental state can be exacerbated by jobs and a person’s working environment. Additionally, as the information age continues to burgeon, people are increasingly sedentary in their working lives, spending more of their days seated, and less time moving around. It is a well-known fact that a decrease in physical activity is detrimental to mental well-being. Therefore, the need for innovative research and development to combat negativity early is required. Implementing solutions using Artificial Intelligence has great potential in this field of research. This work proposes a solution to this problem domain, utilising two concepts of Artificial Intelligence, namely, Convolutional Neural Networks and Generative Adversarial Networks. A CNN is trained to accurately predict when an individual is experiencing negative emotions, achieving a top accuracy of 80.38% with a loss of 0.42. A GAN is trained to synthesise images from an input domain that can be attributed to evoking position emotions. A Graphical User Interface is created to display the generated media to users in order to boost mood and reduce feelings of stress. The work demonstrates the capability for using Deep Learning to identify stress and negative mood, and the strategies that can be implemented to reduce them.


2021 ◽  
Vol 7 (2) ◽  
pp. 755-758
Author(s):  
Daniel Wulff ◽  
Mohamad Mehdi ◽  
Floris Ernst ◽  
Jannis Hagenah

Abstract Data augmentation is a common method to make deep learning assessible on limited data sets. However, classical image augmentation methods result in highly unrealistic images on ultrasound data. Another approach is to utilize learning-based augmentation methods, e.g. based on variational autoencoders or generative adversarial networks. However, a large amount of data is necessary to train these models, which is typically not available in scenarios where data augmentation is needed. One solution for this problem could be a transfer of augmentation models between different medical imaging data sets. In this work, we present a qualitative study of the cross data set generalization performance of different learning-based augmentation methods for ultrasound image data. We could show that knowledge transfer is possible in ultrasound image augmentation and that the augmentation partially results in semantically meaningful transfers of structures, e.g. vessels, across domains.


Sign in / Sign up

Export Citation Format

Share Document