scholarly journals Generative Adversarial Networks to Improve the Robustness of Visual Defect Segmentation by Semantic Networks in Manufacturing Components

2021 ◽  
Vol 11 (14) ◽  
pp. 6368
Author(s):  
Fátima A. Saiz ◽  
Garazi Alfaro ◽  
Iñigo Barandiaran ◽  
Manuel Graña

This paper describes the application of Semantic Networks for the detection of defects in images of metallic manufactured components in a situation where the number of available samples of defects is small, which is rather common in real practical environments. In order to overcome this shortage of data, the common approach is to use conventional data augmentation techniques. We resort to Generative Adversarial Networks (GANs) that have shown the capability to generate highly convincing samples of a specific class as a result of a game between a discriminator and a generator module. Here, we apply the GANs to generate samples of images of metallic manufactured components with specific defects, in order to improve training of Semantic Networks (specifically DeepLabV3+ and Pyramid Attention Network (PAN) networks) carrying out the defect detection and segmentation. Our process carries out the generation of defect images using the StyleGAN2 with the DiffAugment method, followed by a conventional data augmentation over the entire enriched dataset, achieving a large balanced dataset that allows robust training of the Semantic Network. We demonstrate the approach on a private dataset generated for an industrial client, where images are captured by an ad-hoc photometric-stereo image acquisition system, and a public dataset, the Northeastern University surface defect database (NEU). The proposed approach achieves an improvement of 7% and 6% in an intersection over union (IoU) measure of detection performance on each dataset over the conventional data augmentation.

2021 ◽  
Author(s):  
Saman Motamed ◽  
Patrik Rogalla ◽  
Farzad Khalvati

Abstract Successful training of convolutional neural networks (CNNs) requires a substantial amount of data. With small datasets networks generalize poorly. Data Augmentation techniques improve the generalizability of neural networks by using existing training data more effectively. Standard data augmentation methods, however, produce limited plausible alternative data. Generative Adversarial Networks (GANs) have been utilized to generate new data and improve the performance of CNNs. Nevertheless, data augmentation techniques for training GANs are under-explored compared to CNNs. In this work, we propose a new GAN architecture for augmentation of chest X-rays for semi-supervised detection of pneumonia and COVID-19 using generative models. We show that the proposed GAN can be used to effectively augment data and improve classification accuracy of disease in chest X-rays for pneumonia and COVID-19. We compare our augmentation GAN model with Deep Convolutional GAN and traditional augmentation methods (rotate, zoom, etc) on two different X-ray datasets and show our GAN-based augmentation method surpasses other augmentation methods for training a GAN in detecting anomalies in X-ray images.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Veit Sandfort ◽  
Ke Yan ◽  
Perry J. Pickhardt ◽  
Ronald M. Summers

AbstractLabeled medical imaging data is scarce and expensive to generate. To achieve generalizable deep learning models large amounts of data are needed. Standard data augmentation is a method to increase generalizability and is routinely performed. Generative adversarial networks offer a novel method for data augmentation. We evaluate the use of CycleGAN for data augmentation in CT segmentation tasks. Using a large image database we trained a CycleGAN to transform contrast CT images into non-contrast images. We then used the trained CycleGAN to augment our training using these synthetic non-contrast images. We compared the segmentation performance of a U-Net trained on the original dataset compared to a U-Net trained on the combined dataset of original data and synthetic non-contrast images. We further evaluated the U-Net segmentation performance on two separate datasets: The original contrast CT dataset on which segmentations were created and a second dataset from a different hospital containing only non-contrast CTs. We refer to these 2 separate datasets as the in-distribution and out-of-distribution datasets, respectively. We show that in several CT segmentation tasks performance is improved significantly, especially in out-of-distribution (noncontrast CT) data. For example, when training the model with standard augmentation techniques, performance of segmentation of the kidneys on out-of-distribution non-contrast images was dramatically lower than for in-distribution data (Dice score of 0.09 vs. 0.94 for out-of-distribution vs. in-distribution data, respectively, p < 0.001). When the kidney model was trained with CycleGAN augmentation techniques, the out-of-distribution (non-contrast) performance increased dramatically (from a Dice score of 0.09 to 0.66, p < 0.001). Improvements for the liver and spleen were smaller, from 0.86 to 0.89 and 0.65 to 0.69, respectively. We believe this method will be valuable to medical imaging researchers to reduce manual segmentation effort and cost in CT imaging.


2021 ◽  
Author(s):  
Dinh Tan Nguyen ◽  
Cao Truong Tran ◽  
Trung Thanh Nguyen ◽  
Cao Bao Hoang ◽  
Van Phu Luu ◽  
...  

2019 ◽  
Vol 8 (9) ◽  
pp. 390 ◽  
Author(s):  
Kun Zheng ◽  
Mengfei Wei ◽  
Guangmin Sun ◽  
Bilal Anas ◽  
Yu Li

Vehicle detection based on very high-resolution (VHR) remote sensing images is beneficial in many fields such as military surveillance, traffic control, and social/economic studies. However, intricate details about the vehicle and the surrounding background provided by VHR images require sophisticated analysis based on massive data samples, though the number of reliable labeled training data is limited. In practice, data augmentation is often leveraged to solve this conflict. The traditional data augmentation strategy uses a combination of rotation, scaling, and flipping transformations, etc., and has limited capabilities in capturing the essence of feature distribution and proving data diversity. In this study, we propose a learning method named Vehicle Synthesis Generative Adversarial Networks (VS-GANs) to generate annotated vehicles from remote sensing images. The proposed framework has one generator and two discriminators, which try to synthesize realistic vehicles and learn the background context simultaneously. The method can quickly generate high-quality annotated vehicle data samples and greatly helps in the training of vehicle detectors. Experimental results show that the proposed framework can synthesize vehicles and their background images with variations and different levels of details. Compared with traditional data augmentation methods, the proposed method significantly improves the generalization capability of vehicle detectors. Finally, the contribution of VS-GANs to vehicle detection in VHR remote sensing images was proved in experiments conducted on UCAS-AOD and NWPU VHR-10 datasets using up-to-date target detection frameworks.


Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2605 ◽  
Author(s):  
Rafael Anicet Zanini ◽  
Esther Luna Colombini

This paper proposes two new data augmentation approaches based on Deep Convolutional Generative Adversarial Networks (DCGANs) and Style Transfer for augmenting Parkinson’s Disease (PD) electromyography (EMG) signals. The experimental results indicate that the proposed models can adapt to different frequencies and amplitudes of tremor, simulating each patient’s tremor patterns and extending them to different sets of movement protocols. Therefore, one could use these models for extending the existing patient dataset and generating tremor simulations for validating treatment approaches on different movement scenarios.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 86536-86544 ◽  
Author(s):  
Yue Zhu ◽  
Yutao Zhang ◽  
Haigang Zhang ◽  
Jinfeng Yang ◽  
Zihao Zhao

Sign in / Sign up

Export Citation Format

Share Document