scholarly journals Classification of Assembly Operations Using Recurrent Neural Networks

Author(s):  
Björn Papenberg ◽  
Patrick Rückert ◽  
Kirsten Tracht

AbstractVisual sensor data of manual assembly operations offers rich information that can be extracted in order to analyze and digitalize the assembly. The worker’s interaction with tools and objects, as well as the spatial–temporal nature of assembly operations, makes the recognition and classification of assembly operations a complex task. Therefore, classical methods of computer vision do not provide a sufficient solution. This paper presents a recurrent neural network for the classification of manual assembly operations using visual sensor data and addresses the question as to what extent such a solution is feasible in terms of robustness and reliability. Since complex assembly operations are a combination of basic movements, four main assembly operations of the Methods Time-Measurement base operations are classified using a machine learning approach. A dataset of these four assembly operations, reach, grasp, move and release, containing RGB-, infrared-, and depth-data is used. A Convolutional Neural Network—Long Short Term Memory architecture is investigated regarding its applicability due to the spatial–temporal nature of the data.

2021 ◽  
Vol 11 (2) ◽  
pp. 1097-1108
Author(s):  
Bathaloori Reddy Prasad

Aim: Text classification is a method to classify the features from language translation in speech recognition from English to Telugu using a recurrent neural network- long short term memory (RNN-LSTM) comparison with convolutional neural network (CNN). Materials and Methods: Accuracy and precision are performed with dataset alexa and english-telugu of size 8166 sentences. Classification of language translation is performed by the recurrent neural network where a number of the samples (N=62) and convolutional neural network were a number of samples (N=62) techniques, the algorithm RNN implies speech recognition that can be compared with convolutional is the second technique. Results and Discussion: RNN-LSTM from the dataset speech recognition, feature Telugu_id produce accuracy 93% and precision 68.04% which can be comparatively higher than CNN accuracy 66.11%, precision 61.90%. It shows a statistical significance as 0.007 from Independent Sample T-test. Conclusion: The RNN-LSTM performs better in finding accuracy and precision when compared to CNN.


2021 ◽  
Vol 7 ◽  
pp. e365
Author(s):  
Nikita Bhandari ◽  
Satyajeet Khare ◽  
Rahee Walambe ◽  
Ketan Kotecha

Gene promoters are the key DNA regulatory elements positioned around the transcription start sites and are responsible for regulating gene transcription process. Various alignment-based, signal-based and content-based approaches are reported for the prediction of promoters. However, since all promoter sequences do not show explicit features, the prediction performance of these techniques is poor. Therefore, many machine learning and deep learning models have been proposed for promoter prediction. In this work, we studied methods for vector encoding and promoter classification using genome sequences of three distinct higher eukaryotes viz. yeast (Saccharomyces cerevisiae), A. thaliana (plant) and human (Homo sapiens). We compared one-hot vector encoding method with frequency-based tokenization (FBT) for data pre-processing on 1-D Convolutional Neural Network (CNN) model. We found that FBT gives a shorter input dimension reducing the training time without affecting the sensitivity and specificity of classification. We employed the deep learning techniques, mainly CNN and recurrent neural network with Long Short Term Memory (LSTM) and random forest (RF) classifier for promoter classification at k-mer sizes of 2, 4 and 8. We found CNN to be superior in classification of promoters from non-promoter sequences (binary classification) as well as species-specific classification of promoter sequences (multiclass classification). In summary, the contribution of this work lies in the use of synthetic shuffled negative dataset and frequency-based tokenization for pre-processing. This study provides a comprehensive and generic framework for classification tasks in genomic applications and can be extended to various classification problems.


Author(s):  
P. Rama Santosh Naidu ◽  
K.Venkata Ramana ◽  
G. Lavanya Devi

In recent days Machine Learning has become major study aspect in various applications that includes medical care where convenient discovery of anomalies in ECG signals plays an important role in monitoring patient's condition regularly. This study concentrates on various MachineLearning techniques applied for classification of ECG signals which include CNN and RNN. In the past few years, it is being observed that CNN is playing a dominant role in feature extraction from which we can infer that machine learning techniques have been showing accuracy and progress in classification of ECG signals. Therefore, this paper includes Convolutional Neural Network and Recurrent Neural Network which is being classified into two types for better results from considerably increased depth.


2019 ◽  
Vol 7 (5) ◽  
pp. 01-12
Author(s):  
Biao YE ◽  
Lasheng Yu

The purpose of this article is to analyze the characteristics of human fall behavior to design a fall detection system. The existing fall detection algorithms have problems such as poor adaptability, single function and difficulty in processing large data and strong randomness. Therefore, a long-term and short-term memory recurrent neural network is used to improve the effect of falling behavior detection by exploring the internal correlation between sensor data. Firstly, the serialization representation method of sensor data, training data and detection input data is designed. The BiLSTM network has the characteristics of strong ability to sequence modeling and it is used to reduce the dimension of the data required by the fall detection model. then, the BiLSTM training algorithm for fall detection and the BiLSTM-based fall detection algorithm convert the fall detection into the classification problem of the input sequence; finally, the BiLSTM-based fall detection system was implemented on the TensorFlow platform. The detection and analysis of system were carried out using a bionic experiment data set which mimics a fall. The experimental results verify that the system can effectively improve the accuracy of fall detection to 90.47%. At the same time, it can effectively detect the behavior of Near-falling, and help to take corresponding protective measures.


2020 ◽  
Author(s):  
Khandaker Tabin Hasan ◽  
Mohammed Mostafizur Rahman ◽  
Md. Mortuza Ahmmed ◽  
Anjir Ahmed Chowdhury ◽  
Mohammad Khairul Islam

Abstract Introduction: Around the world, scientists are racing hard to understand how Covid-19 epidemic is spreading and growing, thus trying to find ways to prevent it before medications come to pass. Many different models have been proposed so far correlating different factors. Some of them are too localized to indicate a general trend of the pandemic while some others have established transient correlations only.Methods: Hence, in this study, a 4P model has been proposed based on four probabilities (4P) which has been found to be true for all affected countries taking Bangladesh as a case. Efficiency scores have been estimated from survey analysis not only for governing authorities on managing the situation (P(G)) but also for the compliance of the citizens ((P(P)). Since the immune responses of all the people are not uniform to a specific pathogen, the probability of a person getting infected ((P(I)) after being exposed has also been estimated. And the vital one is the probability of Test Positivity ((P(T)) which is a strong indicator of how effectively the infected people are diagnosed and isolated from the rest of the group that affects the rate of growth.Results and Conclusion: All the four parameters have been fitted in a non-linear exponential model that partly updates itself periodically with everyday facts. Along with the model, all the four probabilistic parameters are engaged to train a recurrent neural network using Long-Short Term Memory neural network and the followed trial confirmed a ruling functionality of the 4Ps.


2018 ◽  
Vol 8 (12) ◽  
pp. 2422 ◽  
Author(s):  
Ali Muhamed Ali ◽  
Hanqi Zhuang ◽  
Ali Ibrahim ◽  
Oneeb Rehman ◽  
Michelle Huang ◽  
...  

Kidney cancer is one of the deadliest diseases and its diagnosis and subtype classification are crucial for patients’ survival. Thus, developing automated tools that can accurately determine kidney cancer subtypes is an urgent challenge. It has been confirmed by researchers in the biomedical field that miRNA dysregulation can cause cancer. In this paper, we propose a machine learning approach for the classification of kidney cancer subtypes using miRNA genome data. Through empirical studies we found 35 miRNAs that possess distinct key features that aid in kidney cancer subtype diagnosis. In the proposed method, Neighbourhood Component Analysis (NCA) is employed to extract discriminative features from miRNAs and Long Short Term Memory (LSTM), a type of Recurrent Neural Network, is adopted to classify a given miRNA sample into kidney cancer subtypes. In the literature, only a couple of kidney subtypes have been considered for classification. In the experimental study, we used the miRNA quantitative read counts data, which was provided by The Cancer Genome Atlas data repository (TCGA). The NCA procedure selected 35 of the most discriminative miRNAs. With this subset of miRNAs, the LSTM algorithm was able to group kidney cancer miRNAs into five subtypes with average accuracy around 95% and Matthews Correlation Coefficient value around 0.92 under 10 runs of randomly grouped 5-fold cross-validation, which were very close to the average performance of using all miRNAs for classification.


2021 ◽  
pp. 1-12
Author(s):  
K. Seethappan ◽  
K. Premalatha

Although there have been various researches in the detection of different figurative language, there is no single work in the automatic classification of euphemisms. Our primary work is to present a system for the automatic classification of euphemistic phrases in a document. In this research, a large dataset consisting of 100,000 sentences is collected from different resources for identifying euphemism or non-euphemism utterances. In this work, several approaches are focused to improve the euphemism classification: 1. A Combination of lexical n-gram features 2.Three Feature-weighting schemes 3.Deep learning classification algorithms. In this paper, four machine learning (J48, Random Forest, Multinomial Naïve Bayes, and SVM) and three deep learning algorithms (Multilayer Perceptron, Convolutional Neural Network, and Long Short-Term Memory) are investigated with various combinations of features and feature weighting schemes to classify the sentences. According to our experiments, Convolutional Neural Network (CNN) achieves precision 95.43%, recall 95.06%, F-Score 95.25%, accuracy 95.26%, and Kappa 0.905 by using a combination of unigram and bigram features with TF-IDF feature weighting scheme in the classification of euphemism. These results of experiments show CNN with a strong combination of unigram and bigram features set with TF-IDF feature weighting scheme outperforms another six classification algorithms in detecting the euphemisms in our dataset.


Sign in / Sign up

Export Citation Format

Share Document