Damage Detection Through Modal Flexibility-Based Deflections: Application to a Full-Scale RC Shear Wall Building

2021 ◽  
pp. 97-114
Author(s):  
Giacomo Bernagozzi ◽  
Said Quqa ◽  
Luca Landi ◽  
Pier Paolo Diotallevi
2012 ◽  
Vol 170-173 ◽  
pp. 3594-3597
Author(s):  
Hai Tao Wan ◽  
Peng Li

Reinforced concrete (RC) shear wall component is a very important lateral force-resisting member which is widely used in China. Its seismic behavior has a great impact on the seismic performance of the overall structure. Damage of some RC shear wall structures under the earthquake is caused by the damage of shear wall components, So shear wall components are an essential seismic members. However, the test datum are not enough to study the performance of RC shear wall components, Therefore, Finite element simulation of RC shear wall components is performed by software ABAQUS in the paper. Through comparing with the finite element simulation and the test of load - displacement skeleton curve, failure mode and steel bar strain, the result shows that the finite element simulation can more accurately simulate the situation of the test, verifying the finite element simulation is the most important research tool besides test.


Author(s):  
Wen-Yu He ◽  
Wei-Xin Ren ◽  
Lei Cao ◽  
Quan Wang

The deflection of the beam estimated from modal flexibility matrix (MFM) indirectly is used in structural damage detection due to the fact that deflection is less sensitive to experimental noise than the element in MFM. However, the requirement for mass-normalized mode shapes (MMSs) with a high spatial resolution and the difficulty in damage quantification restricts the practicability of MFM-based deflection damage detection. A damage detection method using the deflections estimated from MFM is proposed for beam structures. The MMSs of beams are identified by using a parked vehicle. The MFM is then formulated to estimate the positive-bending-inspection-load (PBIL) caused deflection. The change of deflection curvature (CDC) is defined as a damage index to localize damage. The relationship between the damage severity and the deflection curvatures is further investigated and a damage quantification approach is proposed accordingly. Numerical and experimental examples indicated that the presented approach can detect damages with adequate accuracy at the cost of limited number of sensors. No finite element model (FEM) is required during the whole detection process.


2013 ◽  
Vol 569-570 ◽  
pp. 457-464 ◽  
Author(s):  
Fabio Luis Marques dos Santos ◽  
Bart Peeters ◽  
Herman van der Auweraer ◽  
Luiz Carlos Sandoval Góes

The use of composites in the aircraft industry has generated a great need for structural health monitoring and damage detection systems, to allow for safer use of complex materials. Such is the case with helicopter blades - these components nowadays are mostly composed of carbon fiber or glass fiber reinforced plastics laminates, epoxy and honeycomb filled core structures. The use of composite materials on the main rotor blade also allows for more complex and efficient shapes to be designed, but at the same time, their use requires an additional effort when it comes to structural monitoring, since damage can occur and go unnoticed. This work presents experimental results for structural health monitoring method based on strain energy. The test subject is a full-scale composite helicopter main rotor blade, which is a highly flexible, slender beam that can display unusual dynamic behavior with orthotropic behavior. This damage detection method is based on the modal strain properties, and a damage detection index is used to identify and quantify damage. A test setup was built to carry out an experimental modal analysis on the main rotor blade. For that purpose, a total of 55 uniaxial accelerometers were used on the helicopter blade to measure the displacement modes of the structure. To compute the strain modes from the displacement modes, central differences approximation is used. Damage is introduced on the blade by attaching a small mass to two different locations. Experimental results show the possibility of locating damage in this case.


2021 ◽  
Vol 4 (1) ◽  
pp. 16
Author(s):  
Leonardus Setia Budi Wibowo ◽  
Dermawan Zebua

Indonesia is one of the countries in the earthquake region. Therefore, it is necessary to build earthquake-resistant buildings to reduce the risk of material and life losses. Reinforced Concrete (RC) shear walls is one of effective structure element to resist earthquake forces. Applying RC shear wall can effectively reduce the displacement and story-drift of the structure. This research aims to study the effect of shear wall location in symmetric medium-rise building due to seismic loading. The symmetric medium rise-building is analyzed for earthquake force by considering two types of structural system. i.e. Frame system and Dual system. First model is open frame structural system and other three models are dual type structural system. The frame with shear walls at core and centrally placed at exterior frames showed significant reduction more than 80% lateral displacement at the top of structure.


2015 ◽  
Vol 220-221 ◽  
pp. 328-332
Author(s):  
Michal Dziendzikowski ◽  
Krzysztof Dragan ◽  
Artur Kurnyta ◽  
Sylwester Klysz ◽  
Andrzej Leski

The paper presents an approach to develop a system for fatigue crack growth monitoring and early damage detection in the PZL – 130 ORLIK TC II turbo-prop military trainer aircraft structure. The system functioning is based on elastic waves propagation excited in the structure by piezoelectric PZT transducers. In the paper, a built block approach for the system design, signal processing as well as damage detection is presented. Description of damage detection capabilities are delivered in the paper and some issues concerning the proposed signal processing methods and their application to crack growth estimation models are discussed. Selected preliminary results obtained during the Full Scale Fatigue Test thus far are also presented.


2018 ◽  
Vol 167 ◽  
pp. 549-566 ◽  
Author(s):  
Giacomo Bernagozzi ◽  
Suparno Mukhopadhyay ◽  
Raimondo Betti ◽  
Luca Landi ◽  
Pier Paolo Diotallevi

Sign in / Sign up

Export Citation Format

Share Document