scholarly journals Analisis Pengaruh Lokasi Dinding Geser Terhadap Pergeseran Lateral Bangunan Bertingkat Beton Bertulang 5 Lantai

2021 ◽  
Vol 4 (1) ◽  
pp. 16
Author(s):  
Leonardus Setia Budi Wibowo ◽  
Dermawan Zebua

Indonesia is one of the countries in the earthquake region. Therefore, it is necessary to build earthquake-resistant buildings to reduce the risk of material and life losses. Reinforced Concrete (RC) shear walls is one of effective structure element to resist earthquake forces. Applying RC shear wall can effectively reduce the displacement and story-drift of the structure. This research aims to study the effect of shear wall location in symmetric medium-rise building due to seismic loading. The symmetric medium rise-building is analyzed for earthquake force by considering two types of structural system. i.e. Frame system and Dual system. First model is open frame structural system and other three models are dual type structural system. The frame with shear walls at core and centrally placed at exterior frames showed significant reduction more than 80% lateral displacement at the top of structure.

2012 ◽  
Vol 594-597 ◽  
pp. 2464-2469
Author(s):  
Dai Kui

Calculation of Short-leg shear walls structural system is a multi-field coupling problem. Through the research and application of short-leg shear wall structure calculation theory, based on the national codes,the short-leg shear wall design principles are established.It is discussed for the reason of the world's first short-leg shear wall structure design formation and development research. According to short-leg shear wall force characteristics, horizonal displacement is divided into destructive story drift and harmless story drift, the formula for calculating the destructive story drift is obtained, using destructive story drift angle parameters and the change of main section height to control the deformation, to control structural rigidity to ensure the structural design rational purpose.


2021 ◽  
Vol 933 (1) ◽  
pp. 012009
Author(s):  
M A Rahman ◽  
M Teguh ◽  
F Saleh

Abstract Multi-story buildings are designed to withstand lateral forces against earthquakes. There are several ways to strengthen multi-story building structures. One way is to add a dual system, namely the shear wall or the bracing systems. Shear walls and bracing techniques can resist earthquake forces in vertical and horizontal directions that occur in building structures. This study compares the results of the structural analysis to three structural models. The 10- story of the structural response used in the research includes the story drift, base shear, displacement, and structural behavior due to the earthquake force. Model 1 is a general structure without the shear wall and bracing systems, Model 2 is a structure completed with L-shear walls, and Model 3 is a structure installed with the X-bracing system. The analyses of three Models were carried out by SAP2000 software. The results show that the slightest interstory drift occurs in Model 2, namely 0.041 mm. The decrease in deviation value that arises in Model 2 is 12.6 mm, with 34.35%. In Model 1, the story drift exceeds the allowable limit, so that with such a model, it is not feasible. Therefore, it is necessary to add shear walls or a bracing system.


Author(s):  
Guoqiang LI ◽  
Mengde PANG ◽  
Feifei Sun ◽  
Liulian LI ◽  
Jianyun SUN

Coupled shear walls are widely used in high rise buildings, since they can not only provide efficient lateral stiffness but also behave outstanding energy dissipation ability especially for earthquake-resistance. Traditionally, the coupling beams are made of reinforced concrete, which are prone to shear failure due to low aspect ratio and greatly reduce the efficiency and ability of energy dissipation.  For overcoming the shortcoming of concrete reinforced coupling beams (RCB), an innovative steel coupling beams called two-level-yielding steel coupling beam (TYSCB) is invented to balance the demand of stiffness and energy dissipation for coupled shear walls. TYSCBs are made of two parallel steel beams with yielding at two different levels.  To verify and investigate the aseismic behaviour improvement of TYSCB-coupled shear walls, two 1/3 scale, 10-storey coupled shear wall specimens with TYSCB and RCB were tested under both gravity and lateral displacement reversals. These two specimens were designed with the same bearing capacity, thus to be easier to compare. The experimental TYSCB specimen demonstrated more robust cyclic performance. Both specimens reached 1% lateral drift, however, the TYSCB-coupled shear wall showed minimal strength degradation. Additionally, a larger amount of energy was dissipated during each test of the TYSCB specimen, compared with the RCB specimen. Based on the experimental results, design recommendations are provided.


2021 ◽  
Vol 11 (1) ◽  
pp. 6043-6063
Author(s):  
Ali Jafarian ◽  
Seyed Babak Jafarian

Considering the increase in the current construction process and the future needs of Iran, the necessity to use high-rise buildings for reduction in urbanization costs and optimal use of land will be inevitable in the future. The performance of steel plate shear wall system as a modern global system, which has an effective application in high-rise buildings and also brings economic benefits compared to previous systems, is evaluated in this study. Steel Plate Shear Walls (SPSW) are a new type of system resistant to wind and earthquake lateral loads, which dates back to the 1970s. In this research, eight samples of shear wall with various stiffening arrangements and sections with ST37 and ST52 alloys are modeled. To evaluate the nonlinear dynamic analysis, the samples are subjected to the San Fernando earthquake force and are modeled and analyzed by ABAQUS software based on the finite element theory. The results of analyzing the samples indicate better performance of the system with stiffener in both vertical and horizontal directions. Also, the use of sections with ST52 alloy has improved the performance of the shear wall by approximately 40%.


Author(s):  
Siddhesh Bisane

Abstract: Structural analysis is the science of determining the effects of different loads on structures. Structural stability and stiffness are a main concern in any high-rise structures. Shear walls are structural members that are mainly responsible for resisting lateral loads predominant on structures. They are mainly responsible to increase the stiffness, reduce story drift and displacement. In order to have a comprehensive understanding about the contribution of shear wall, following research is carried out. This research involves comparing two G+16 structures; one without a shear wall and one with it. The structure has 4 bays of 3m each along X direction and Z direction. In this, we will see how shear wall resists lateral sway and reduces story drift and increases stiffness. As the height increases, the shear wall absorbs more lateral load than the frame. The software to be used for analysis is STAADPro. Keywords: STAADPro, Stiffness, storey displacement, storey drift.


2021 ◽  
Vol 23 (2) ◽  
pp. 167-176
Author(s):  
Sekar Mentari ◽  
Rosi Nursani

Indonesia is one of the countries that is prone to earthquakes. In addition to the dead loads, superimposed dead loads, and live loads, the design of buildings in Indonesia must be concerned with earthquake loads. Installing shear walls in the building structure as the Special Moment Frame Dual System is one of a solution to withstand earthquake loads. However, the location of shear walls must be considered, especially in buildings with horizontal irregularities. This study aims to determine the optimum location of the shear walls in a 10-storey building that has U-configuration with dynamic earthquake loads. This research is a numerical simulation ran by modelling the structure with software. To know the effect of the shear wall’s location on a building, several variations of the shear wall configuration with different positions have been conducted. It can be seen the lateral displacement of each floor and the shear force are the response structure to withstand the dynamic earthquake loads. Shear walls that are located close to the center of mass of the building are the optimum variation because the position of the shear wall is the closest to the core area of the building, which is the rotational axis of the building.


2007 ◽  
Vol 340-341 ◽  
pp. 1115-1120
Author(s):  
Shi Yun Xiao ◽  
Hong Nan Li ◽  
Yan Gang Zhao ◽  
Jing Wei Zhang

This paper focuses on an experimental investigation and theoretical analysis of different types of RC shear wall with the profile steel braces in two side columns and diagonal profile steel braces of walls subjected to applied repeated cyclic loads. Fifteen RC shear walls with different shear span ratio are tested and their aseismic charactertics are studied. The effect of profile steel bracings on failure property, bearing capacity, ductility and hysteretical characteristic of shear wall is investigated based on experimental results. It is shown that adding the profile steel braces on the boundary column and inner of walls can obviously enhance the ultimate strength of specimens and improve their aseismic characteristics. Finally, the mechanical model of the shear wall is presented and the formulae for calculating the load-carrying capacity are developed. Numerical analyses indicate that the theoretical results agree well with those from experiments.


2016 ◽  
Vol 10 (1) ◽  
pp. 334-348
Author(s):  
Cui Ji-Dong ◽  
Han Xiao-Lei ◽  
Yang Wan ◽  
Li Wei-Chen

In order to establish the relation between damage state and member deformation of the L-section RC shear wall, 216 FE models designed to meet the requirements of the Chinese codes were set up. The analysis fully considers the variation of parameters including axial load ratio and shear span ratio etc. According to the results, criteria of classifying failure modes of L-section RC shear walls are proposed. Failure modes are determined by shear-span ratio, moment-shear ratio and end columns' reinforcement ratio. Deformation limits corresponding to respective performance levels are put forward. Fitted formulas of calculating the limits are also presented. It is shown that the categorization criteria are reliably accurate in predicting failure modes. Deformation limits of a given L-section RC shear wall could be determined via axial load ratio and moment-shear ratio. The fitted formulas possess a satisfactory correlation with numerical results.


Shear walls are a structural system which gives solidness or stability to structures from lateral loads like wind, seismic loads. The structural systems are fabricated by reinforced concrete, plywood/timber unreinforced, reinforced masonry at which these systems are subdivided into coupled shear walls, shear wall frames, shear panels and staggered walls. The present paper work was made in the interest of studying and analysis of various research works involved in enhancement of shear walls and their behaviour towards lateral loads. In SAP2000 analysis we found that when we apply lateral force between the stories the amount of compression and tension force between the stories obtained is equal to the manual analysis .In STAAD.PRO, we analyzed the light frame shear wall for seismic analysis. The estimated results for light frame shear wall with one storey, shear wall with two storey and shear wall with three storey shown similar to the results which are obtained by using FEM software like STAAD and SAP2000.


Sign in / Sign up

Export Citation Format

Share Document