Energy-Efficient Fuzzy Geocast Routing Protocol for Opportunistic Networks

Author(s):  
Khuram Khalid ◽  
Isaac Woungang ◽  
Sanjay Kumar Dhurandher ◽  
Jagdeep Singh
Information ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 504
Author(s):  
Khuram Khalid ◽  
Isaac Woungang ◽  
Sanjay Kumar Dhurandher ◽  
Jagdeep Singh ◽  
Joel J. P. C. Rodrigues

Opportunistic networks (OppNets) are a type of challenged network where there is no guaranteed of end-to-path between the nodes for data delivery because of intermittent connectivity, node mobility and frequent topology changes. In such an environment, the routing of data is a challenge since the battery power of the mobile nodes drains out quickly because of multi-routing activities such as scanning, transmitting, receiving, and computational processing, effecting the overall network performance. In this paper, a novel routing protocol for OppNets called Energy-Efficient Check-and-Spray Geocast Routing (EECSG) is proposed, which introduces an effective way of message distribution in the geocasting region to all residing nodes while saving the energy consumption by restricting the unnecessary packet transmission in that region. A Check-and-Spray technique is also introduced to eliminate the overhead of packets in the geocast region. The proposed EECSG is evaluated by simulations and compared against the Efficient and Flexible Geocasting for Opportunistic Networks (GSAF) and the Centrality- Based Geocasting for Opportunistic networks (CGOPP) routing protocols in terms of average latency, delivery ratio, number of messages forwarded, number of dead nodes, overhead ratio, and hop count, showing superior performance.


2021 ◽  
Author(s):  
Khuram Khalid

In this thesis, a history-based energy-efficient routing protocol (called AEHBPR) for opportunistic networks (OppNets) is proposed, which saves the energy consumption by avoiding unnecessary packets transmission in the network and by clearing the buffer of nodes carrying the copies of the already delivered packets. The proposed AEHBPR protocol is evaluated using the Opportunistic NEtwork (ONE) simulator with both synthetic and real mobility traces, showing a superior performance compared to the History-Based Prediction for Routing (HBPR) protocol and AEProphet, in terms of average remaining energy, number of dead nodes, number of delivered messages, and overhead ratio, where AEProphet is the ProPHet routing protocol for OppNets on which the same energy-aware mechanism has been implemented.


2014 ◽  
Vol 69 (3) ◽  
pp. 1183-1214 ◽  
Author(s):  
Sanjay K. Dhurandher ◽  
Deepak Kumar Sharma ◽  
Isaac Woungang ◽  
Rohan Gupta ◽  
Sanjay Garg

2021 ◽  
Author(s):  
Khuram Khalid

In this thesis, a history-based energy-efficient routing protocol (called AEHBPR) for opportunistic networks (OppNets) is proposed, which saves the energy consumption by avoiding unnecessary packets transmission in the network and by clearing the buffer of nodes carrying the copies of the already delivered packets. The proposed AEHBPR protocol is evaluated using the Opportunistic NEtwork (ONE) simulator with both synthetic and real mobility traces, showing a superior performance compared to the History-Based Prediction for Routing (HBPR) protocol and AEProphet, in terms of average remaining energy, number of dead nodes, number of delivered messages, and overhead ratio, where AEProphet is the ProPHet routing protocol for OppNets on which the same energy-aware mechanism has been implemented.


Author(s):  
Yugashree Bhadane ◽  
Pooja Kadam

Now days, wireless technology is one of the center of attention for users and researchers. Wireless network is a network having large number of sensor nodes and hence called as “Wireless Sensor Network (WSN)”. WSN monitors and senses the environment of targeted area. The sensor nodes in WSN transmit data to the base station depending on the application. These sensor nodes communicate with each other and routing is selected on the basis of routing protocols which are application specific. Based on network structure, routing protocols in WSN can be divided into two categories: flat routing, hierarchical or cluster based routing, location based routing. Out of these, hierarchical or cluster based routing is becoming an active branch of routing technology in WSN. To allow base station to receive unaltered or original data, routing protocol should be energy-efficient and secure. To fulfill this, Hierarchical or Cluster base routing protocol for WSN is the most energy-efficient among other routing protocols. Hence, in this paper, we present a survey on different hierarchical clustered routing techniques for WSN. We also present the key management schemes to provide security in WSN. Further we study and compare secure hierarchical routing protocols based on various criteria.


Author(s):  
A. Radhika ◽  
D. Haritha

Wireless Sensor Networks, have witnessed significant amount of improvement in research across various areas like Routing, Security, Localization, Deployment and above all Energy Efficiency. Congestion is a problem of  importance in resource constrained Wireless Sensor Networks, especially for large networks, where the traffic loads exceed the available capacity of the resources . Sensor nodes are prone to failure and the misbehaviour of these faulty nodes creates further congestion. The resulting effect is a degradation in network performance, additional computation and increased energy consumption, which in turn decreases network lifetime. Hence, the data packet routing algorithm should consider congestion as one of the parameters, in addition to the role of the faulty nodes and not merely energy efficient protocols .Nowadays, the main central point of attraction is the concept of Swarm Intelligence based techniques integration in WSN.  Swarm Intelligence based Computational Swarm Intelligence Techniques have improvised WSN in terms of efficiency, Performance, robustness and scalability. The main objective of this research paper is to propose congestion aware , energy efficient, routing approach that utilizes Ant Colony Optimization, in which faulty nodes are isolated by means of the concept of trust further we compare the performance of various existing routing protocols like AODV, DSDV and DSR routing protocols, ACO Based Routing Protocol  with Trust Based Congestion aware ACO Based Routing in terms of End to End Delay, Packet Delivery Rate, Routing Overhead, Throughput and Energy Efficiency. Simulation based results and data analysis shows that overall TBC-ACO is 150% more efficient in terms of overall performance as compared to other existing routing protocols for Wireless Sensor Networks.


2014 ◽  
Vol 35 (6) ◽  
pp. 1520-1524
Author(s):  
Xian-ling Lu ◽  
Neng-ming Peng ◽  
Bao-guo Xu

Sign in / Sign up

Export Citation Format

Share Document