Pre-modelled Flexibility for the Control-Flow of Business Processes: Requirements and Interaction with Users

Author(s):  
Thomas Bauer
Author(s):  
Iok-Fai Leong ◽  
Yain-Whar Si ◽  
Robert P. Biuk-Aghai

Current Workflow Management Systems (WfMS) are capable of managing simultaneous workflows designed to support different business processes of an organization. These departmental workflows are considered to be interrelated since they are often executed concurrently and are required to share a limited number of resources. However, unexpected events from the business environment and lack of proper resources can cause delays in activities. Deadline violations caused by such delays are called temporal exceptions. Predicting temporal exceptions in concurrent workflows is a complex problem since any delay in a task can cause a ripple effect on the remaining tasks from the parent workflow as well as from the other interrelated workflows. In addition, different types of loops are often embedded in the workflows for representing iterative activities, and presence of such control flow patterns in workflows can further increase the difficulty in estimation of task completion time. In this chapter, the authors describe a critical path based approach for predicting temporal exceptions in concurrent workflows that are required to share limited resources. This approach allows predicting temporal exceptions in multiple attempts while workflows are being executed. The accuracy of the proposed prediction algorithm is analyzed based on a number of simulation scenarios. The result shows that the proposed algorithm is effective in predicting exceptions for instances where long duration tasks are scheduled (or executed) at the early phase of the workflow.


2022 ◽  
Vol 2022 ◽  
pp. 1-14
Author(s):  
Yadi Wang ◽  
Wangyang Yu ◽  
Peng Teng ◽  
Guanjun Liu ◽  
Dongming Xiang

With the development of smart devices and mobile communication technologies, e-commerce has spread over all aspects of life. Abnormal transaction detection is important in e-commerce since abnormal transactions can result in large losses. Additionally, integrating data flow and control flow is important in the research of process modeling and data analysis since it plays an important role in the correctness and security of business processes. This paper proposes a novel method of detecting abnormal transactions via an integration model of data and control flows. Our model, called Extended Data Petri net (DPNE), integrates the data interaction and behavior of the whole process from the user logging into the e-commerce platform to the end of the payment, which also covers the mobile transaction process. We analyse the structure of the model, design the anomaly detection algorithm of relevant data, and illustrate the rationality and effectiveness of the whole system model. Through a case study, it is proved that each part of the system can respond well, and the system can judge each activity of every mobile transaction. Finally, the anomaly detection results are obtained by some comprehensive analysis.


2014 ◽  
Vol 20 (6) ◽  
pp. 794-815 ◽  
Author(s):  
Xinwei Zhu ◽  
Jan Recker ◽  
Guobin Zhu ◽  
Flávia Maria Santoro

Purpose – Context-awareness has emerged as an important principle in the design of flexible business processes. The goal of the research is to develop an approach to extend context-aware business process modeling toward location-awareness. The purpose of this paper is to identify and conceptualize location-dependencies in process modeling. Design/methodology/approach – This paper uses a pattern-based approach to identify location-dependency in process models. The authors design specifications for these patterns. The authors present illustrative examples and evaluate the identified patterns through a literature review of published process cases. Findings – This paper introduces location-awareness as a new perspective to extend context-awareness in BPM research, by introducing relevant location concepts such as location-awareness and location-dependencies. The authors identify five basic location-dependent control-flow patterns that can be captured in process models. And the authors identify location-dependencies in several existing case studies of business processes. Research limitations/implications – The authors focus exclusively on the control-flow perspective of process models. Further work needs to extend the research to address location-dependencies in process data or resources. Further empirical work is needed to explore determinants and consequences of the modeling of location-dependencies. Originality/value – As existing literature mostly focusses on the broad context of business process, location in process modeling still is treated as “second class citizen” in theory and in practice. This paper discusses the vital role of location-dependencies within business processes. The proposed five basic location-dependent control-flow patterns are novel and useful to explain location-dependency in business process models. They provide a conceptual basis for further exploration of location-awareness in the management of business processes.


2012 ◽  
Vol 23 (2) ◽  
pp. 72-97 ◽  
Author(s):  
Henry H. Bi ◽  
John Nolt

A number of information systems have been developed to automate business processes. For process modeling, verification, and automation in information systems, a formal semantics of control-flow process models is needed. Usually process modeling languages (e.g., BPMN, EPC, IDEF3, UML, and WfMC standards) are used to represent control-flow process models. When these process modeling languages are developed, their informal semantics are typically described using examples, but their formal semantics are not defined. Although many different semantics for control-flow process models have been proposed, the existing semantics specifications have limitations because they do not support certain desirable features. In this paper, we propose a new formal semantics for control-flow process models. We show that it is more accurate, complete, and applicable than the existing semantics specifications.


Author(s):  
Giorgio Bruno

Since business processes may address complex behavioral requirements resulting from the integration of several items, i.e. tasks, business entities (also called artifacts), control flow rules and data flow rules, they need notations able to accommodate several viewpoints. This chapter proposes a notation, ARTS, aimed at integrating the traditional activity-oriented viewpoint and the artifact-oriented one. The major benefits are the unification of the control flow and the data flow and a clear representation of the choices to be carried out by the participants. The basic features are illustrated with the help of three versions of a simplified hiring process. This chapter also deals with the structure of work lists, which are the major interface between the participants and their tasks. The organization of the work lists leverages the artifacts to emphasize human choices; for this reason, the traditional linear structure is replaced with a network one, which shows the artifacts along with their states, correlations and valid options.


Author(s):  
Shunhui Ji ◽  
Liming Hu ◽  
Yihan Cao ◽  
Pengcheng Zhang ◽  
Jerry Gao

Business process specified in Business Process Execution Language (BPEL), which integrates existing services to develop composite service for offering more complicated function, is error-prone. Verification and testing are necessary to ensure the correctness of business processes. SPIN, for which the input language is PROcess MEta-LAnguage (Promela), is one of the most popular tools for detecting software defects and can be used both in verification and testing. In this paper, an automatic approach is proposed to construct the verifiable model for BPEL-based business process with Promela language. Business process is translated to an intermediate two-level representation, in which eXtended Control Flow Graph (XCFG) describes the behavior of BPEL process in the first level and Web Service Description Models (WSDM) depict the interface information of composite service and partner services in the second level. With XCFG of BPEL process, XCFGs for partner services are generated to describe their behavior. Promela model is constructed by defining data types based on WSDM and defining channels, variables and processes based on XCFGs. The constructed Promela model is closed, containing not only the BPEL process but also its execution environment. Case study shows that the proposed approach is effective.


2019 ◽  
Vol 2 (3) ◽  
pp. 23 ◽  
Author(s):  
Sitalakshmi Venkatraman ◽  
Ramanathan Venkatraman

In the past decades, a number of methodologies have been proposed to innovate and improve business processes that play an important role in enhancing the operational efficiency of an organisation in order to attain business competitiveness. Traditional business process modelling (BPM) approaches are process-centric and focus on the workflow, ignoring the data modelling aspects that are essential for today’s data-centric landscape of modern businesses. Hence, a majority of BPM initiatives have failed in several organisations due to the lack of data-driven insights into their business performance. On the other hand, the information systems of today focus more on dataflows using object-oriented modelling (OOM) approaches. Even standard OOM approaches, such as unified modelling language (UML) methods, exhibit inherent weaknesses due to their lack of formalized innovation with business objects and the dynamic control-flows of complex business processes. In addition to these issues, both BPM and OOM approaches have been augmented with an array of complex software tools and techniques which have confused businesses. There is a lack of a common generalized framework that integrates the well-formalised control-flow based BPM approach and the dataflow based OOM approach that is suitable for today’s enterprise systems in order to support organisations to achieve successful business process improvements. This paper takes a modest step to fill this gap. We propose a framework using a structured six-step business process modelling (BPM) guideline combined with a business object-oriented methodology (BOOM) in a unique and practical way that could be adopted for improving an organisation’s process efficiency and business performance in contemporary enterprise systems. Our proposed business object-oriented process modelling (BOOPM) framework is applied to a business case study in order to demonstrate the practical implementation and process efficiency improvements that can be achieved in enterprise systems using such a structured and integrated approach.


2015 ◽  
Vol 24 (01) ◽  
pp. 1540002 ◽  
Author(s):  
Georg Grossmann ◽  
Shamila Mafazi ◽  
Wolfgang Mayer ◽  
Michael Schrefl ◽  
Markus Stumptner

In large organizations, multiple stakeholders may modify the same business process. This paper addresses the problem when stakeholders perform changes on process views which become inconsistent with the business process and other views. Related work addressing this problem is based on execution trace analysis which is performed in a post-analysis phase and can be complex when dealing with large business process models. In this paper, we propose a design-based approach that can efficiently check consistency criteria and propagate changes on-the-fly from a process view to its reference process and related process views. The technique is based on consistent specialization of business processes and supports the control flow aspect of processes. Consistency checks can be performed during the design time by checking simple rules which support an efficient change propagation between views and reference process.


Sign in / Sign up

Export Citation Format

Share Document