Virtual Sensing for Wind Turbine Blade Full Field Response Estimation in Operational Modal Analysis

Author(s):  
Silvia Vettori ◽  
Emilio DiLorenzo ◽  
Bart Peeters ◽  
Eleni Chatzi
2021 ◽  
pp. 0309524X2110116
Author(s):  
Oumnia Lagdani ◽  
Mostapha Tarfaoui ◽  
Mourad Nachtane ◽  
Mourad Trihi ◽  
Houda Laaouidi

In the far north, low temperatures and atmospheric icing are a major danger for the safe operation of wind turbines. It can cause several problems in fatigue loads, the balance of the rotor and aerodynamics. With the aim of improving the rigidity of the wind turbine blade, composite materials are currently being used. A numerical work aims to evaluate the effect of ice on composite blades and to determine the most adequate material under icing conditions. Different ice thicknesses are considered in the lower part of the blade. In this paper, modal analysis is performed to obtain the natural frequencies and corresponding mode shapes of the structure. This analysis is elaborated using the finite element method (FEM) computer program through ABAQUS software. The results have laid that the natural frequencies of the blade varied according to the material and thickness of ice and that there is no resonance phenomenon.


2008 ◽  
Vol 13-14 ◽  
pp. 105-114
Author(s):  
Amit Puri ◽  
Alexander D. Fergusson ◽  
I. Palmer ◽  
Andrew Morris ◽  
F. Jensen ◽  
...  

This paper presents the experimental results obtained of flexurally loaded wind turbine blade cross section material. All material was extracted from a wind turbine blade box girder and testing was conducted in four point configuration. The aim was to gain an understanding of the structural integrity of this lightweight material as it deforms in flexure. To allow for thorough analysis, digital image correlation (DIC) was used to produce full field strain maps of the deforming specimens. Results highlight the capability of the DIC technique to identify regions of failure, as well as the aspects responsible for them. Overall, the results present a foundation for tests on larger substructure, and eventually integration into manufacturing and maintenance aspects of the industry.


2021 ◽  
pp. 23-34
Author(s):  
M.J. Pawar ◽  
Amar Patnaik ◽  
Vikas Kukshal ◽  
Ashiwani Kumar ◽  
Vikash Gautam

2018 ◽  
Vol 217 ◽  
pp. 01003 ◽  
Author(s):  
Lee Zhou Yi ◽  
Choe-Yung Teoh

Wind turbines cannot simply be installed in Malaysia due to low wind speed condition. the project has analyzed the existing wind turbine blade (Aeolos-V 1k) design based on modal properties using computational approach (ANSYS Workbench) and redesign it. the modal analysis is simulated to observe natural frequency and corresponding mode shaped of the system under free vibration. the flow induced vibration can cause blade failure due to resonance or fatigue. Fluid Structural Interaction (FSI) ANSYS is used to the determined the interaction between the wind flow and the blade. Harmonic Response ANSYS is used to analyze the frequency response of the blade under wind induced vibration. After modification, the first mode has increased from 91.42 Hz to 102.12, since it is more than 50.92 Hz (Turbine maximum operating frequency), resonance would not occur during operating condition. the Aeolos-V’s blade has been modified by using. teak wood material and. redesign the blade for weight. reduction and aim for lower blade cost. the weight of modified blade has reduced 72.8 % after using teak wood and the efficiency of the wind turbine also increased. Modified design has been tested under Malaysia maximum wind speed of 9.44 m/s, the yield stress of teak wood (10.3 MPa) is higher than the maximum stress (4.2 MPa) obtained under force vibration which gives safety factor of 2.4. Hence, modified blade is reliable, efficient and more economic for Malaysia.


2014 ◽  
Vol 952 ◽  
pp. 181-185
Author(s):  
Qian Qian Zhou ◽  
He Sun ◽  
Chun Bao Liu ◽  
Yang Wang ◽  
Xiao Guang Liu

Wind turbine blade is an important component to capture wind energy and converse energy. Basing on Wilson optimization method and engineering pratice, 2MW wind turbine blade’s aerodynamic profile is designed. Meanwhile, in order to avoid the resonance damage, top 10 rank modal frequencies and displacement gradient distribution contours are obtained through modal analysis. The results show that blade’s natural frequency does not coincide with the external excitation frequency, which avoids the resonance damage. Blade’s major vibration forms are waving and shimmy, requiring the ability of excellent resisting torsion. Therefore, the design should enhance bending stiffness of the blade. This paper provides an effective method for large wind turbine blades’ design and optimization.


Sign in / Sign up

Export Citation Format

Share Document