Classification of Cardiotocography Data for Fetal Health Using Feature Selection Techniques

Author(s):  
Imsal Rafique ◽  
Mudasir Dilawar ◽  
Amina Umer ◽  
Muhammad Ahmad Hassan
Author(s):  
VLADIMIR NIKULIN ◽  
TIAN-HSIANG HUANG ◽  
GEOFFREY J. MCLACHLAN

The method presented in this paper is novel as a natural combination of two mutually dependent steps. Feature selection is a key element (first step) in our classification system, which was employed during the 2010 International RSCTC data mining (bioinformatics) Challenge. The second step may be implemented using any suitable classifier such as linear regression, support vector machine or neural networks. We conducted leave-one-out (LOO) experiments with several feature selection techniques and classifiers. Based on the LOO evaluations, we decided to use feature selection with the separation type Wilcoxon-based criterion for all final submissions. The method presented in this paper was tested successfully during the RSCTC data mining Challenge, where we achieved the top score in the Basic track.


2020 ◽  
pp. 707-725
Author(s):  
Sujata Dash

Efficient classification and feature extraction techniques pave an effective way for diagnosing cancers from microarray datasets. It has been observed that the conventional classification techniques have major limitations in discriminating the genes accurately. However, such kind of problems can be addressed by an ensemble technique to a great extent. In this paper, a hybrid RotBagg ensemble framework has been proposed to address the problem specified above. This technique is an integration of Rotation Forest and Bagging ensemble which in turn preserves the basic characteristics of ensemble architecture i.e., diversity and accuracy. Three different feature selection techniques are employed to select subsets of genes to improve the effectiveness and generalization of the RotBagg ensemble. The efficiency is validated through five microarray datasets and also compared with the results of base learners. The experimental results show that the correlation based FRFR with PCA-based RotBagg ensemble form a highly efficient classification model.


Author(s):  
Sujata Dash

Efficient classification and feature extraction techniques pave an effective way for diagnosing cancers from microarray datasets. It has been observed that the conventional classification techniques have major limitations in discriminating the genes accurately. However, such kind of problems can be addressed by an ensemble technique to a great extent. In this paper, a hybrid RotBagg ensemble framework has been proposed to address the problem specified above. This technique is an integration of Rotation Forest and Bagging ensemble which in turn preserves the basic characteristics of ensemble architecture i.e., diversity and accuracy. Three different feature selection techniques are employed to select subsets of genes to improve the effectiveness and generalization of the RotBagg ensemble. The efficiency is validated through five microarray datasets and also compared with the results of base learners. The experimental results show that the correlation based FRFR with PCA-based RotBagg ensemble form a highly efficient classification model.


2022 ◽  
Vol 2161 (1) ◽  
pp. 012003
Author(s):  
Rajat Jain ◽  
Pranam R Betrabet ◽  
B Ashwath Rao ◽  
N V Subba Reddy

Abstract Arrhythmia is one of the life-threatening heart diseases which is diagnosed and analyzed using electrocardiogram (ECG) recordings and other symptoms namely rapid heartbeat or chest-pounding, shortness of breath, near fainting spells, insufficient pumping of blood from the heart, etc along with sudden cardiac arrest. Arrhythmia records a hasty and aberrant ECG. In this implementation, the arrhythmia dataset is collected from the UCI machine learning repository and then classified the records into sixteen stated classes using multiclass classification. The large feature set of the dataset is reduced using improved feature selection techniques such as t-Distributed Stochastic Neighbor Embedding (TSNE), Principal Component Analysis (PCA), Uniform Manifold Approximation, and Projection (UMAP) and then an Ensemble Classifier is built to analyse the classification accuracy on arrhythmia dataset to conclude when and which approach gives optimal results.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
G. Doquire ◽  
G. de Lannoy ◽  
D. François ◽  
M. Verleysen

Supervised and interpatient classification of heart beats is primordial in many applications requiring long-term monitoring of the cardiac function. Several classification models able to cope with the strong class unbalance and a large variety of feature sets have been proposed for this task. In practice, over 200 features are often considered, and the features retained in the final model are either chosen using domain knowledge or an exhaustive search in the feature sets without evaluating the relevance of each individual feature included in the classifier. As a consequence, the results obtained by these models can be suboptimal and difficult to interpret. In this work, feature selection techniques are considered to extract optimal feature subsets for state-of-the-art ECG classification models. The performances are evaluated on real ambulatory recordings and compared to previously reported feature choices using the same models. Results indicate that a small number of individual features actually serve the classification and that better performances can be achieved by removing useless features.


Sign in / Sign up

Export Citation Format

Share Document