Development of Optimum Thin-Walled Parts Milling Parameters Calculation Technique

Author(s):  
Sergey Dobrotvorskiy ◽  
Serhii Kononenko ◽  
Yevheniia Basova ◽  
Ludmila Dobrovolska ◽  
Milan Edl
2011 ◽  
Vol 189-193 ◽  
pp. 2482-2485
Author(s):  
Xin Hua Mao ◽  
Zhi Gang Hu ◽  
Ting Ting Huang

Because of its low stiffness and intensity structural features, thin-walled parts affected by milling force, easily produce deformation and vibration among processing. In this paper, by optimizing milling parameters, it can be realized to control the size of the dynamic milling force and the milling state. Then it reaches the purpose to decrease workpiece deformation, and makes processing conditions maintain a stable. It not only reduces deformation caused by the vibration, but also makes thin-walled parts errors meet the tolerance requirements.


2019 ◽  
Vol 224 ◽  
pp. 05009
Author(s):  
Xiangjing Kong ◽  
Zishan Ding ◽  
Lijun Xu ◽  
Lijian Zhu ◽  
Jian Zhang ◽  
...  

With the increasing application of curved thin-walled parts, the evaluation and control of curved surface residual stress in milling are becoming increasingly demanding. However, effects of milling parameters on distribution of residual stress remains a major challenge in the present aerospace research areas. In this paper, , impacts of milling parameters on curved surface residual stress have been investigated in a series of residual stress experiments and simulations. It is found that the residual stress can be lowered by increasing milling speed and tool radius within a reasonable range. The superposition of curved surface residual stress under two machining conditions have been analyzed using the milling simulation model. It has been found that the curved surface residual stress induced by the subsequent cutting will be superimposed on the curved surface residual stress induced by the previous cutting and that the superposition rates of residual stress induced by up milling are larger than down milling.


2014 ◽  
Vol 575 ◽  
pp. 437-441
Author(s):  
Yi Shu Hao ◽  
Guo Qing Tang ◽  
Meng Zhang

In order to solve the problem of size guarantee related to thin-walled structure in traditional milling parameter selection, specific aluminum alloy frame part contains curved surface and thin-walled structure is studied. Numerical analysis is used in milling parameter selection method. Machining errors are calculated and checked based on milling force analysis. The milling process is simulated using finite element software. And aluminum alloy frame part processing is optimized from the angle of milling parameters according to the simulation results. Optimized milling parameters scheme is acquired, the results show that both machining precision and efficiency of the frame part are improved.


2020 ◽  
Vol 14 ◽  
Author(s):  
Song Yang ◽  
Tie Yin ◽  
Feiyue Wang

Background: Thin-walled parts of aluminum alloy are easy to occur machining deformation duo to the characteristics of thin wall, low rigidity, and complex structure. Objective: To reduce and control the machining deformation, it is necessary to select reasonable machining parameters. Method: The influence of milling parameters on the milling forces, milling temperature, and machining deformation was analyzed through the established model based on ABAQUS. Then, the corresponding empirical formula was obtained by MATLAB, and parameters optimization was carried out as well. Besides, a lot of patents on machining thin-walled parts were studied. Results: The results shown that the prediction error of milling forces is about 15%, and 20% of milling temperature. In this case, the optimized milling parameters are as follows: ap=1 mm, ae=0.1 mm, n=12 000 r/min, and f=400 mm/min. It is of great significance to reduce the machining deformation and improve the machining quality of thin-walled parts.


2010 ◽  
Vol 44-47 ◽  
pp. 2842-2846
Author(s):  
Xiao Hui Jiang ◽  
Bei Zhi Li ◽  
Jian Guo Yang ◽  
He Long Wu

In this paper, with the milling processing of aluminum-alloy thin-walled parts as the research object, using software AdvantEdge, a milling simulation model is developed to study milling parameters affect on the cutting force, heat and catenation. It is found that by adjusting the ratio of milling parameters, the effects of cutting forces and heat can turn to the favorable direction of workpiece. In addition, we combine numerical simulation with experiments to explore the law of optimization of process parameters. It is discovered that the method of improving the milling speed and reducing the cutting depth properly can ensure the milling efficiency and the quality of the workpiece, providing a scientific insight for achieving high-quality, low-cost and efficient thin-walled parts manufacturing.


2021 ◽  
Vol 11 (13) ◽  
pp. 5881
Author(s):  
Shouhua Yi ◽  
Yunxin Wu ◽  
Hai Gong ◽  
Chenxi Peng ◽  
Yongbiao He

Aeronautical thin-walled frame workpieces are usually obtained by milling aluminum alloy plates. The residual stress within the workpiece has a significant influence on the deformation due to the relatively low rigidity of the workpiece. To accurately predict the milling-induced residual stress, this paper describes an orthogonal experiment for milling 7075 aluminum alloy plates. The milling-induced residual stress at different surface depths of the workpiece, without initial stress, is obtained. The influence of the milling parameters on the residual stress is revealed. The parameters include milling speed, feed per tooth, milling width, and cutting depth. The experimental results show that the residual stress depth in the workpiece surface is within 0.12 mm, and the residual stress depth of the end milling is slightly greater than that of the side milling. The calculation models of residual stress and milling parameters for two milling methods are formulated based on regression analysis, and the sensitivity coefficients of parameters to residual stress are calculated. The residual stress prediction model for milling 7075 aluminum alloy plates is proposed based on a back-propagation neural network and genetic algorithm. The findings suggest that the proposed model has a high accuracy, and the prediction error is between 0–14 MPa. It provides basic data for machining deformation prediction of aluminum alloy thin-walled workpieces, which has significant application potential.


2018 ◽  
Vol 764 ◽  
pp. 174-183
Author(s):  
Feng Jiao ◽  
Li Zhao ◽  
Cheng Lin Yao ◽  
Feng Qi

The hard machinability of titanium alloy material and the poor stiffness of thin-walled parts hindered the extensive application of titanium alloy thin-walled components in aerospace engineering. In order to heighten the geometric accuracy in the processing, the ultrasonic vibration assisted (UVA) end milling technology with workpiece vibrating in feed direction was put forward in this paper, and characteristics of the milling deformation in UVA milling of titanium alloy TC4 thin-walled workpieces were researched. Through the theoretical analysis, the cutting force and deformation characteristics in UVA milling were clarified. Based on the range analysis of orthogonal experiment, the effects of milling parameters and ultrasonic amplitude on the deflection displacement and the milling deformation of workpieces are obtained. Research results show that the deflection displacement in the process of UVA milling affects the thickness error of the thin wall. Ultrasonic parameters as well as milling parameters should be optimized to obtain higher machining accuracy. The research provides a certain reference for the precision milling of titanium alloy thin-walled parts.


Sign in / Sign up

Export Citation Format

Share Document