scholarly journals Effective Solution of Ill-Posed Inverse Problems with Stabilized Forward Solver

Author(s):  
Marcin Łoś ◽  
Robert Schaefer ◽  
Maciej Smołka

AbstractWe consider inverse parametric problems for elliptic variational PDEs. They are solved through the minimization of misfit functionals. Main difficulties encountered consist in the misfit multimodality and insensitivity as well as in the weak conditioning of the direct (forward) problem, that therefore requires stabilization. A complex multi-population memetic strategy hp-HMS combined with the Petrov-Galerkin method stabilized by the Demkowicz operator is proposed to overcome obstacles mentioned above. This paper delivers the theoretical motivation for the common inverse/forward error scaling, that can reduce significantly the computational cost of the whole strategy. A short illustrative numerical example is attached at the end of the paper.

1983 ◽  
Vol 45 (5) ◽  
pp. 1237-1245 ◽  
Author(s):  
O. M. Alifanov
Keyword(s):  

2006 ◽  
Vol 04 (03) ◽  
pp. 639-647 ◽  
Author(s):  
ELEAZAR ESKIN ◽  
RODED SHARAN ◽  
ERAN HALPERIN

The common approaches for haplotype inference from genotype data are targeted toward phasing short genomic regions. Longer regions are often tackled in a heuristic manner, due to the high computational cost. Here, we describe a novel approach for phasing genotypes over long regions, which is based on combining information from local predictions on short, overlapping regions. The phasing is done in a way, which maximizes a natural maximum likelihood criterion. Among other things, this criterion takes into account the physical length between neighboring single nucleotide polymorphisms. The approach is very efficient and is applied to several large scale datasets and is shown to be successful in two recent benchmarking studies (Zaitlen et al., in press; Marchini et al., in preparation). Our method is publicly available via a webserver at .


Author(s):  
C. W. Groetsch ◽  
Martin Hanke

Abstract A simple numerical method for some one-dimensional inverse problems of model identification type arising in nonlinear heat transfer is discussed. The essence of the method is to express the nonlinearity in terms of an integro-differential operator, the values of which are approximated by a linear spline technique. The inverse problems are mildly ill-posed and therefore call for regularization when data errors are present. A general technique for stabilization of unbounded operators may be applied to regularize the process and a specific regularization technique is illustrated on a model problem.


Author(s):  
Mingyong Zhou

Background: Complex inverse problems such as Radar Imaging and CT/EIT imaging are well investigated in mathematical algorithms with various regularization methods. However it is difficult to obtain stable inverse solutions with fast convergence and high accuracy at the same time due to the ill-posed property and non-linear property. Objective: In this paper, we propose a hierarchical and multi-resolution scalable method from both algorithm perspective and hardware perspective to achieve fast and accurate solu-tions for inverse problems by taking radar and EIT imaging as examples. Method: We present an extension of discussion on neuromorphic computing as brain-inspired computing method and the learning/training algorithm to design a series of problem specific AI “brains” (with different memristive values) to solve a general complex ill-posed inverse problems that are traditionally solved by mathematical regular operators. We design a hierarchical and multi-resolution scalable method and an algorithm framework to train AI deep learning neuron network and map into the memristive circuit so that the memristive val-ues are optimally obtained. We propose FPGA as an emulation implementation for neuro-morphic circuit as well. Result: We compared the methodology between our approach and traditional regulariza-tion method. In particular we use Electrical Impedance Tomography (EIT) and Radar imaging as typical examples to compare how to design an AI deep learning neuron network architec-tures to solve inverse problems. Conclusion: With EIT imaging as a typical example, we show that any moderate complex inverse problem, as long as it can be described as combinational problem, AI deep learning neuron network is a practical alternative approach to try to solve the inverse problems with any given expected resolution accuracy, as long as the neuron network width is large enough and computational power is strong enough for all combination samples training purpose.


2019 ◽  
Vol 27 (3) ◽  
pp. 317-340 ◽  
Author(s):  
Max Kontak ◽  
Volker Michel

Abstract In this work, we present the so-called Regularized Weak Functional Matching Pursuit (RWFMP) algorithm, which is a weak greedy algorithm for linear ill-posed inverse problems. In comparison to the Regularized Functional Matching Pursuit (RFMP), on which it is based, the RWFMP possesses an improved theoretical analysis including the guaranteed existence of the iterates, the convergence of the algorithm for inverse problems in infinite-dimensional Hilbert spaces, and a convergence rate, which is also valid for the particular case of the RFMP. Another improvement is the cancellation of the previously required and difficult to verify semi-frame condition. Furthermore, we provide an a-priori parameter choice rule for the RWFMP, which yields a convergent regularization. Finally, we will give a numerical example, which shows that the “weak” approach is also beneficial from the computational point of view. By applying an improved search strategy in the algorithm, which is motivated by the weak approach, we can save up to 90  of computation time in comparison to the RFMP, whereas the accuracy of the solution does not change as much.


2021 ◽  
Vol 2090 (1) ◽  
pp. 012139
Author(s):  
OA Shishkina ◽  
I M Indrupskiy

Abstract Inverse problem solution is an integral part of data interpretation for well testing in petroleum reservoirs. In case of two-phase well tests with water injection, forward problem is based on the multiphase flow model in porous media and solved numerically. The inverse problem is based on a misfit or likelihood objective function. Adjoint methods have proved robust and efficient for gradient calculation of the objective function in this type of problems. However, if time-lapse electrical resistivity measurements during the well test are included in the objective function, both the forward and inverse problems become multiphysical, and straightforward application of the adjoint method is problematic. In this paper we present a novel adjoint algorithm for the inverse problems considered. It takes into account the structure of cross dependencies between flow and electrical equations and variables, as well as specifics of the equations (mixed parabolic-hyperbolic for flow and elliptic for electricity), numerical discretizations and grids, and measurements in the inverse problem. Decomposition is proposed for the adjoint problem which makes possible step-wise solution of the electric adjoint equations, like in the forward problem, after which a cross-term is computed and added to the right-hand side of the flow adjoint equations at this timestep. The overall procedure provides accurate gradient calculation for the multiphysical objective function while preserving robustness and efficiency of the adjoint methods. Example cases of the adjoint gradient calculation are presented and compared to straightforward difference-based gradient calculation in terms of accuracy and efficiency.


Author(s):  
Risheng Liu

Numerous tasks at the core of statistics, learning, and vision areas are specific cases of ill-posed inverse problems. Recently, learning-based (e.g., deep) iterative methods have been empirically shown to be useful for these problems. Nevertheless, integrating learnable structures into iterations is still a laborious process, which can only be guided by intuitions or empirical insights. Moreover, there is a lack of rigorous analysis of the convergence behaviors of these reimplemented iterations, and thus the significance of such methods is a little bit vague. We move beyond these limits and propose a theoretically guaranteed optimization learning paradigm, a generic and provable paradigm for nonconvex inverse problems, and develop a series of convergent deep models. Our theoretical analysis reveals that the proposed optimization learning paradigm allows us to generate globally convergent trajectories for learning-based iterative methods. Thanks to the superiority of our framework, we achieve state-of-the-art performance on different real applications.


1986 ◽  
Vol 1 (4) ◽  
pp. 523-523
Author(s):  
Freeman Gilbert
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document